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Abstract—For over two centuries, the wheelchair has been one of 
the most common assistive devices for individuals with locomotor 
impairments without many modifications. Wheelchair control is a 
complex motor task that increases both the physical and cognitive 
workload. New wheelchair interfaces, including Power Assisted 
devices, can further augment users by reducing the required 
physical effort, however little is known on the mental effort 
implications. In this study, we adopted a neuroergonomic 
approach utilizing mobile and wireless functional near infrared 
spectroscopy (fNIRS) based brain monitoring of physically active 
participants. 48 volunteers (30 novice and 18 experienced) self-
propelled on a wheelchair with and without a PowerAssist 
interface in both simple and complex realistic environments. 
Results indicated that as expected, the complex more difficult 
environment led to lower task performance complemented by 
higher prefrontal cortex activity compared to the simple 
environment. The use of the PowerAssist feature had significantly 
lower brain activation compared to traditional manual control 
only for novices. Expertise led to a lower brain activation pattern 
within the middle frontal gyrus, complemented by performance 
metrics that involve lower cognitive workload. Results here 
confirm the potential of the Neuroergonomic approach and that 
direct neural activity measures can complement and enhance task 
performance metrics. We conclude that the cognitive workload 
benefits of PowerAssist are more directed to new users and 
difficult settings. The approach demonstrated here can be utilized 
in future studies to enable greater personalization and 
understanding of mobility interfaces within real-world dynamic 
environments. 
 

Index Terms—Neuroergonomics, Cognitive Workload, 
Functional Near Infrared Spectroscopy, Manual Wheelchair 
Control, Assistive Devices.  

I. INTRODUCTION 
heelchairs have been one of the most common and 
widely accepted assistive devices for individuals with 
limitations in mobility for over two centuries [1, 2]. 

While typical manual wheelchairs can increase independence 
and allow users to better engage in their environment, 
information is lacking on the performance, both mentally and 
physically, of both traditional and emerging design interfaces 
particularly within realistic environments [3]. Furthermore, 
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wheelchair control is a complicated motor task that increases 
both the cognitive and physical workload of an individual [4].  

Cognitive load/workload (CL) embodies the limited 
information processing capacity of the brain demanded by a 
task or environment [5]. As environmental or task demands 
increase, a subsequent increase in CL is generated – if these 
demands exceed the brain’s maximum processing capacity task 
performance inevitably declines [6]. Accidents, injuries, and 
errors are a result of poor task performance and high CL [7]. 
CL incorporates the interplay between the environmental 
demands (input), human characteristics (capacities), and task 
performance (output) on the operator [8, 9]. 

New or difficult tasks require increased attention and 
executive control leading to recruitment of the frontal lobes. 
The prefrontal cortex (PFC) is often monitored for CL due to 
its functional relationship with working memory [10, 11], 
decision making [12, 13] and executive control [14, 15]. The 
PFC also regulates motor coordination, acquisition, and timing 
based on environmental feedback [16]. Understanding the 
factors in reducing/optimizing CL in the effort of improving 
task performance is important, particularly within the context 
of operating complex machinery, as improper handling can lead 
to serious injuries, economic burden, and other maladies to and 
from the user [17, 18]. This is aligned with the field of 
Neuroergonomics – the study of the brain in natural 
environments and real-world tasks as opposed to artificial lab 
environments with simplified tasks [19-25]. 

Manual wheelchair control can be likened to operating 
heavy machinery. The dangers of having excessive CL while 
operating a wheelchair are numerous and can lead to serious 
injuries or property damage (to wheelchair or environment). 
Poor control can even lead to fatal and non-fatal accidents 
further impacting mobility, resulting in activity restriction, less 
social participation, and a reduced quality of life [26]. Injury 
prevention during wheelchair control can involve reducing the 
CL impact, by reducing the physical load (demands of the 
environment) [27, 28], or increasing physical capacity (human 
characteristics) [29].  

Electric wheelchairs can allow users to reduce the negative 
physical impact of wheelchair control by bypassing their 
individual power constraints. The use of electric wheelchairs 
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can reduce both strain injuries and metabolic demand, allowing 
users to travel further and in more difficult terrain than 
traditional manual control [30]. However, electric wheelchairs 
can predispose users to a less active lifestyle, leading to lifelong 
health complications related to inactivity (obesity, 
cardiovascular disease, etc.) [31, 32]. 

Power Assisted Devices (PADs) can provide a user with 
the extra physical capacity of electric wheelchairs, while 
continuing to promote the beneficial physical activity that a 
traditional manual wheelchair propulsion extends [29]. 
PowerAssisted Wheelchairs are controlled similarly to a 
traditional manual wheelchair but are fitted with small electric 
motors to augment the user’s physical capacity. While PADs 
have inherent design problems, they are being increasingly 
adopted among manual Wheelchair Users (WU) [33]. However, 
information is lacking regarding the CL implications of PADs, 
as research has been limited towards the user’s physical aspects 
of this novel interface [29, 34, 35].  

Until recently, it has been extraordinarily challenging to 
monitor CL in active environments including wheelchair 
propulsion. CL has been measured using increasingly direct, 
precise and objective methodology, from subjective self-reports  
[23], performance-based measures [36], to more direct 
physiological, or neurophysiological measures [37]. 
Furthermore, the literature emphasizes the importance of direct 
neurophysiological measures, as they can evaluate brain 
activity/CL continuously, and with more precise spatial and 
temporal acuity [38, 39].  

fNIRS is a non-invasive optical neuroimaging technique 
that can be used to monitor the cortical hemodynamic response 
relatively similar to the functional Magnetic Resonance 
Imaging (fMRI) but using a wearable sensor.  fNIRS is 
portable, user-friendly, relatively inexpensive, with rapid 
application times and resistant to motion artifacts posing it as a 
good candidate for neuroimaging on the go during physical 
activity and within natural environments [9, 40]. It uses near 
infrared light between 650nm and 950nm range [41] to measure 
brain activity via  cortical oxygenated hemoglobin (HbO) and 
deoxygenated hemoglobin (HbR) concentration changes 
evoked by motor and cognitive tasks [42, 43]. Improvements in 
fNIRS has led to miniaturized, wireless, and battery-operated 
hardware, and improved signal quality and motion artifact 
rejection signal processing techniques, to allow for minimally-
intrusive investigations of cortical activity in physically active 
tasks and environments [9, 19, 44-48].  

Wheelchair control is a complex motor task conducted 
within natural environments where over-recruitment of the PFC 
can lead to decreased performance and safety. Furthermore, the 
PFC is an important part of the indirect locomotor pathway, 
which is activated when the automatic execution of a motor task 
is impaired (e.g. in complex and challenging environments)[49, 
50]. Therefore, it is imperative that new clinical strategies to 
objectively assess assistive technologies are developed and 
must import neuroergonomic considerations in the 
development of new wheelchair/mobility devices. The 
objective of this study was to determine the operator-
environmental-machine interactions on CL and evaluate how 
the intervention/augmentation of PADs influence wheelchair 
operator behavior and brain activity. This paper set out to assess 
a new generation assistive mobility device and its effects on CL 

between two user groups – novice and experienced – out of 
laboratory settings through task performance metrics and neural 
hemodynamic monitoring. 

II. METHODS 
Forty eight participants (22 males) were recruited and were 
either novice (n = 30; 31.8 ± 9.0 yrs) or experienced (n = 18; 
33.4 ± 13.5 yrs). Only those physically capable of controlling a 
manual wheelchair for over an hour, and without mental 
impairment or recent physical injury were recruited. All 
participants completed a Physical Activity Readiness 
Questionnaire (PAR-Q) [51] and were determined to be eligible 
for participation. All participants reported normal or corrected-
to-normal vision. Experienced WU are those whose primary 
means of locomotion involves the use of a manual wheelchair. 
Novice wheelchair users were abled-bodied participants who 
had no previous experience propelling a wheelchair.  

The study was conducted at the Oxford Brookes Sports 
Hall in Oxford, UK with approval obtained from the University 
Research Ethics Committee. 

A. Measurements and Devices 
The manual wheelchair frame (QUICKIE LIFE R), weighing 

10.5kg, was fitted to each participant to traverse two 
environments (see section B). The wheelchair accommodated a 
45cm seat width (all participants were comfortably adjusted) 
and used the M24 Alber Twion (Alber GmbH, Albstadt, 
Germany) PowerAssist wheels (6kg each). The PowerAssist 
offers two maximum speed settings: 6km/h and 10km/h. The 
last one was chosen as the 6km/hr setting could impact/cap an 
individual’s speed and affect results even given that the average 
manual wheelchair user propels at a speed of 4km/hr. From the 
three modes that the device had (eco, sport, and auto), we chose 
the eco mode. This was preferred as it required more physical 
effort than the sport mode (meant for outdoor activity) and over 
the auto mode that switches between sport and eco modes at an 
inconsistent frequency.  

Participants wore a portable fNIRS sensor (NIRSport from 
NIRx Medical Technologies LLC, NY, USA) positioned over 
the forehead. fNIRS channel placement was standardized 
according to the established international 10-20 system for the 
eight light source and eight detector placements (see Fig. 1) 

Fig. 1. fNIRS Sources (Red) and Detectors (Blue) form 20 channels (green) 
overlaid on a human scalp (left). The Source (S1-S8) and Detectors (D1-D7) 
montage that creates the layout for visualizing the results (bottom right). The 
experimental fNIRS set up photo is also displayed (top right).  
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[52]. The inter-optode distance of approximately 3 cm formed 
20 channels (measurement areas) sampled at 7.81Hz. Cortical 
regions with landmarks  for the experimental configuration 
were generated using fNIRS Optodes Locator Decider (FOLD) 
toolbox [53, 54] with the Laboratory of Neuroimaging (LONI) 
Probabilistic Brain Atlas (LPBA40) [55]. Table 1 below shows 
the channel according to source detector pair EEG labelling 
with ‘x-y-z’ configuration coordinates and brain area/landmark 
specificity for improved comparability and reproducibility. All 
sessions were video recorded using a GoPro Hero Action 
Digital.  

 Errors were recorded manually by two researchers during the 
experiment and additionally verified using the video-recorded 
from the experiment. It consisted on totaling the number of 
errors per obstacle for a final total error count. Higher error 
counts implied worse performance, and higher potential for 
injury. Additional task performance metrics include average 
speed and completion time per circuit. 

B. Environmental Design 
Two types of environment (simple and complex) were  

designed. The simple environment was a flat path that is free of 
obstacles. It formed the outer circuit of 13 m x 14 m for a total 
distance of 54 m, and the complex environment incorporated 
four separate obstacles and was the inner circuit of 36 m. Each 
obstacle (approximately 7 m) had 1 m of free space at both ends 
to provide sufficient buffer before the subsequent obstacle. 
Obstacles were built to represent real-world wheelchair 
conditions, two of which required more strength (Rough 

Terrain and Incline Ramp), and two which required more 
coordination (Uneven Slope/Side Slopes and 
Maneuvering/Weaving). The experimental setup is displayed in 
Figure 2 and described below. The environments were set with 
guiding lines for participants to follow. 

All obstacles were designed in accordance to safety standards 
described within the wheelchair manual, as well as the 
American Disability Association (ADA) 2010 guidelines [56]. 
All errors were tabulated when the user shifted off the obstacle 
path, hesitated or abruptly stopped during transit, or bumped 
into obstacles, ignored obstacles, or crossed predetermined 
safety markings. The obstacles are detailed below 1-4 and 
depicted (see Fig. 2).  

1) Rough Terrain  
Required control over a high friction surface, mimicking 
carpet, grass, or unsmooth flooring.  

2) Side Slopes/Uneven Slope 
Required balancing during transit of two angled slopes, each 
2.4 m and 0.70 m apart, with a gradient of 10° and set at 20 
cm high (safety tested for balance). One slope was 
approached with the left wheel while the other with the right 
to give an unbalanced sensation mimicking approaches to 
curb ramps.  

3) Incline Ramp 
Required ascending and descending a 5° slope to a flat 
platform. This was to mimic accessible standard ramps in 
public buildings.  

4) Maneuvering/Weaving 
Required weaving or maneuvering in between 7 cones set 
0.92 m apart, mimicking the minimum acceptable accessible 
door width, and or situations with many fixed objects within 
the path.  

C. Experimental Setup 
Participants navigated each circuit in both clockwise and 

counterclockwise directions alternating every 4 circuits during 
the experiment to avoid asymmetrical strain/exhaustion. A 
pseudorandomized predetermined circuit order per participant 
was conducted to reduce a repetitive learning effect. The study 
design employed a 2x2 within subject design (environment x 
interface). Ultimately, participants completed 8 repetitions of 
both the simple (free of obstacles) and complex environments 
(with obstacles), with four repetitions of the PAD, and four 
repetitions of traditional manual control totaling 16 circuits. 

Participants completed each circuit at a self-selected pace, 
allowing environments to be comparable by completion time. 

TABLE I 
FNIRS POSITIONS AND BRAIN LOCATIONS  

Channel: 
Source - 
Detector 

Brain 
Area 

Specificity 
(%) 

D 
(mm) 

X 
(mm) 

Y 
(mm) 

Z 
(mm) 

1: F3 – F5 mFGL 74.22 29 -45 35 23 
2: F3 – F1 mFGL 87.01 29 -30 38 39 
3: AF7 – F5 iFGL 87.56 34 -47 42 4 
4: AF7 – Fp1 iFGL 53.57 31 -34 56 -4 
5: AF3 – F1 mFGL 80.24 44 -24 50 30 
6: AF3 – Fp1 mFGL 90.79 30 -26 60 5 
7: AF3 - Afz mFGL 55.88 39 -16 59 21 
8: Fz – F1 sFGL 74.89 30 -11 40 47 
9: Fz - Afz sFGL 48.54 40 0 48 37 
10: Fz – F2 sFGR 75.09 28 11 40 48 
11: Fpz – Fp1 mFGL 50.16 31 -14 64 -3 
12: Fpz - Afz sFGL 47.28 41 -1 61 11 
13: Fpz – Fp2 mFGR 51.58 30 14 65 -3 
14: AF4 - Afz mFGR 52.67 37 15 59 22 
15: AF4 – F2 mFGR 75.53 43 23 51 31 
16: AF4 – Fp2 mFGR 91.67 30 26 61 6 
17: F4 – F2 mFGR 82.62 29 29 40 40 
18: F4 – F6 mFGR 87.56 28 46 38 24 
19: AF8 – Fp2 iFGR 52.77 30 34 58 -4 
20: AF8 -F6 iFGR 88.89 33 47 45 4 

Column 1 represents the Channel: Source – Detector (i.e. 1: F3 – F5). 
Column 2 represents the Brain Areas, where i = Inferior, m = Middle, s = 
Superior, FG = Frontal Gyrus, L = Left, and R = Right. Column 3 represents 
the specificity to the primary brain area, where secondary brain areas have 
less specificity. Column 4 displays the distance between the source and 
detector, and Columns 5-7 represent the MNI coordinates.  

Fig. 2.  Experimental setup, including outer simple environment (green) and 
inner complex environment (yellow) with the 4 obstacles (numbered within 
the figure, and described below) in the Oxford Brooks Sports Hall, numbered 
in order.  
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Participant’s pace was determined to be within ±5s of their 
initial circuit time (complex environment without PowerAssist) 
and instructed to make the fewest errors. This was an 
unobtrusive way to control for effort, and account for both 
fatigue and learning. Rest period prior to each circuit (30-50s) 
facilitated a more stable physiological baseline of fNIRS 
signals. Each individual circuit completion time was recorded. 

C. Signal Processing and Statistical Analyses 
NIRS data was recorded via NIRStar (v15.0) and processed 

via NIRS AnalyzIR toolbox [57, 58]. One participant (from the 
Novice User Type) was removed as the data had significant 
motion contamination. Therefore 47 participants’ data were 
used within this study (29 novices and 18 experienced). The 
data were pre-whitened to resolve high frequency noise, 
cardiovascular effects, and signal drift using an autoregressive 
model [57]. The differential path length factor was calculated 
per subject [59]. Attenuation changes in the wavelengths 
(760nm and 850nm) were transformed to concentration changes 
of HbO and HbR respectively using the modified Beer-Lambert 
approach [40]. Wavelet filter was applied to HbO and HbR data 
to remove motion artifacts with a threshold of 5 standard 
deviations, and a wavelet basis function of sym8 [60]. Beta 
values calculated from HbO/HbR amplitudes for each block 
with local baseline (paired t-test: rest vs. circuit) per source-
detector pair or channel for each task condition through subject-
level autoregressive iteratively reweighted least squares 
General Linear Modeling. The parameter estimates were 
derived using a canonical HRF, as previous evidence suggests 
that tasks of duration longer than ten seconds, such as within 
this experiment, have better performance for testing hypothesis 
of difference response amplitudes [61]. The parameters of the 
canonical (double gamma function) HRF employed included: 
1s as the dispersion time constants for the peak and undershoot 
period, 4s and 16s as the peak and undershoot time respectively, 
1:6 as the ratio of main peak height to the undershoot, and 32s 
as the duration. 

Statistical analysis of task performance metrics during the 
experimental procedure employed the use of GLM 
implemented in NCSS (NCSS, LLC. Kaysville, Utah, USA). 
The dependent measures (errors, speed, completion time), were 
assessed and parameter estimates derived. Bonferroni p-value 
adjustments were calculated to indicate significance for 
interaction effects. Cohen’s d values were also calculated to 
indicate the observed effect size. 

Group analysis employed mixed effects with repeated 
measures across the entire sample allowing for a population 
inference of both biometric and task performance measures. 
The subject factor was treated as a random effect drawn from a 
larger population, while the fixed effects were conditions of 
environment (simple vs. complex), interface (manual vs. 
PowerAssist) and user type (experienced vs. novices). Type I 
Errors were controlled using false detection rate (FDR) 
Benjamini-Hochberg adjustments [62, 63]. 

III. RESULTS 

A. Task Performance Metrics 
All 48 participants reported similar responses within the 

PAR-Q (no fatigue, sickness, alcohol intake, etc.) and were 

hence eligible for study participation. All 48-participant task 
performance metrics (number of errors, speed, time) were 
evaluated using GLM and presented in Table II. For the error 
and speed dependent variables, the fixed factors in GLM were 
interface type with 2 levels (PowerAssist and Manual), and user 
type with 2 levels (Experienced and Novice). For the error 
dependent variable, there were no statistically significant 
results (p>0.05) for any of the interactions or main effects. For 
the speed dependent variable, there were statistically significant 
results for the main effect of user type (F1,764 = 70.11 p<0.001, 
d = 0.6241), where the experienced group was 0.164 m/s faster 
than the novice group. However, there were no significant 
interactions with interface type.  

TABLE II 
Behavioral Results per User Type, Environment, and Interface 

Factors Conditions Errors Speed (m/s) Time (s) 
A 1: Novices 1.671±0.121 0.663±0.012 71.937±0.963 

2: Experienced 1.757±0.156 0.826±0.015 62.767±1.243 
B 1: Simple NA NA 65.47±1.077 

2: Complex NA NA 69.234±1.077 
C 1: Manual 1.786±0.135 0.739±0.013 68.329±1.077 

2: PowerAssist 1.642±0.135 0.75±0.013 66.375±1.077 

A*B 

1,1 NA NA 71.685±1.362 
1,2 NA NA 72.188±1.362 
2,1 NA NA 59.253±1.759 
2,2 NA NA 66.281±1.759 

C*A 

1,1 1.641±0.171 0.661±0.017 72.543±1.362 
1,2 1.93±0.222 0.817±0.022 64.115±1.759 
2,1 1.7±0.171 0.665±0.017 71.33±1.362 
2,2 1.583±0.22 0.836±0.022 61.42±1.759 

C*B 

1,1 NA NA 65.026±1.523 
1,2 NA NA 71.633±1.523 
2,1 NA NA 65.914±1.523 
2,2 NA NA 66.836±1.523 

A represents the User Type, B represents the Environment, and C represents 
the Interface. Data displayed includes the mean ± standard error. Shaded 
boxes represent significant results *(p<0.05). Bold represents significant 
results at higher significance *p<0.001.  

 For the circuit completion time dependent variable, the fixed 
factors in GLM were with two levels (PowerAssist and 
Manual), and user type with two levels (Experienced and 
Novice), and environment with two levels (Complex and 
Simple). As expected, there was a significant difference for user 
type (F1,768 = 33.99 p<0.001, d = 0.4345), where the 
experienced group completed their circuits on average of 9.17 
s faster than novices, and a significant effect for environment 
(F1,768 = 5.73 p=0.0169, d = 0.1784), with the complex  

Fig 3. Circuit Completion Time between user type (novice and 
experienced) per environment (*p<0.05; **p<0.01; ***p<0.001).  Novices 
were slower than experienced and found both environments equally 
difficult. 
  

Authorized licensed use limited to: Hasan Ayaz. Downloaded on May 19,2020 at 18:53:30 UTC from IEEE Xplore.  Restrictions apply. 



1534-4320 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.2992382, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

TNSRE-2019-00683 
 

 

5 

environment taking an average of 3.76 s longer to be completed 
than the simple one. A significant interaction between user type 
and environment (F1,768 = 4.30 p=0.038, d = 0.1464) is depicted 
in Figure 3.  
 Novices had longer circuit completion times than 
Experienced WU regardless of environment, but similar circuit 
completion times between the two environments, whereas 
Experienced WU had higher completion times for the complex 
environment when compared to the simple one.  

B. Functional Near Infrared Spectroscopy 
 Increased HbO (decreased HbR) is often associated with 

increased cortical activity, while decreased HbO (increased 
HbR) is often associated with decreased activity [64]. Within 
Figures 4-8, solid bars depict the regions of significantly 
increased or decreased PFC activity after FDR correction 
(q<0.05). According to the color-bar on the right-side of figures 
4-8, red regions indicate increased HbO amplitudes via positive 
beta-values, while blue regions indicate decreased HbO 
amplitudes via negative beta-values.  

All 47-participant fNIRS (per channel) were evaluated using 
GLM, with environment, interface type, and user type as fixed 
factors with subject as a random factor.  

Figure 4 depicts the brain activation difference between 
complex and simple environments for all 47 participants. Both 
the mFG and the right iFG of the PFC experienced significantly 
elevated HbO for the complex environment as to the simple, 
regardless of interface or user type. HbR was significantly 
increased in the same channels of the mFG as in Figure 4.    

Upon further evaluation, when exploring the effect of 
interface within the environmental differences, the use of the 
PowerAssist feature was more effective than traditional manual 

control, resulting in fewer regions of increased HbO (see Fig. 
5). HbR only significantly increased in a similar channel under 
manual control as in Figure 5 left. 

No overall significant differences between the manual and 
PowerAssist interface were found, however upon further 
evaluation of user type within the interface differences, the 
PowerAssist feature was more effective in reducing HbO (Right 
mFG) for novices, and had no significant effect for experienced 
WU (See Fig. 6) ( t(188) = -4.3185, p = 0.002, d = -0.6299). 
HbR only showed a significant increase in HbR within the mFG 
for experienced WU. Furthermore, this CL reduction due to the 
PowerAssist interface was consistent for novices within the 
complex environment, but not within a simple flat environment 
(see Fig. 7). HbR results were complimentary to the results 
displayed in Figure 7 right, with an increased HbR in the same 
channel.  

Figure 8 depicts the brain activation differences between 
experienced and novice WU for 47 participants. The left 

Complex – Simple

LR

Fig 4. fNIRS results of 47 subjects, displaying PFC HbO comparing 
differences between Complex and Simple Environments. Environmental 
Complexity increased HbO within the middle frontal, and right inferior frontal 
gyrus. (FDR corrected, q<0.05) 
 

Fig 5. fNIRS results of 47 subjects, displaying PFC HbO differences between 
the Complex and Simple Environments for the Manual and PowerAssist 
Interfaces. The use of the PowerAssist interface led to fewer activated regions 
of the middle frontal gyrus. (FDR corrected, q<0.05) 

Complex – Simple

Manual Power-Assist

LR LR

Fig 6. fNIRS results of 29 novices and 18 experienced WU, displaying PFC 
HbO comparing interface effect (PowerAssist – Manual). The PowerAssist 
Interface decreased HbO for novices (left) and played no role in differing 
activation patterns for experienced users (right). (FDR corrected, q<0.05) 

PowerAssist – Manual

Novices Experienced

LR LR

Fig 7. fNIRS results of 29 novices and displaying PFC HbO comparing 
interface effect (PowerAssist – Manual). The PowerAssist Interface decreased 
HbO for novices within the complex environment only (right) and played no 
role in differing activation patterns in the simple environment (left). (FDR 
corrected, q<0.05) 

Novices: PowerAssist – Manual

Simple Complex

LR LR

Experienced – Novice

LR

Fig 8. fNIRS results of 47 subjects, displaying PFC HbO comparing 
differences between Experienced and Novice WU. Wheelchair Experience 
increased HbO within the right dorsal middle frontal gyrus, and decreased 
HbO within the right ventral middle frontal gyrus. (FDR corrected, q<0.05) 
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inferior frontal gyrus had significantly increased HbO (t(188) = 
3.0611, p = 0.0337, d = 0.4465), and the left superior frontal 
gyrus had significantly decreased HbO (t(188) = -3.0675, p = 
0.0337, d = -0.4474) for experienced WU. HbR results showed 
significant decreases for experienced WU compared to novices 
within the mFG and sFG. 

Upon further evaluation, when exploring the effect of 
environment within user type differences, only the complex 
environment led to increased HbO in the right inferior frontal 
gyrus (see Fig. 9) (t(188) = 3.6967, p = 0.0229, d = 0.5392). 
HbR results were complimentary to the results displayed in 
Figure 9, with a decrease specifically for the complex 
environment in the iFG. 

Furthermore, upon exploring the effect of wheelchair 
interface within user type differences, the manual interface led 
to increased HbO of the left inferior frontal gyrus (t(188) = 
3.1056, p = 0.0409, d = 0.453) (see Fig. 10 left) while the 
PowerAssist interface led to decreased HbO within the left 
superior frontal gyrus (t(188) = -3.0793, p = 0.0409, d = -
0.44916) (see Fig. 10 right). HbR results were complimentary 
in the mFG with a decrease during manual control, and a 
decrease in the mFG during PowerAssist. 

IV. DISCUSSION 
Excessive workload can lead to serious injuries, increased 

economic burden, and other maladies to and from the user [18, 
65]. This can further impact mobility, resulting in activity 
restriction, affecting social participation, health and wellbeing 
and quality of life [26]. Wheelchair control is a more 
complicated, and physically demanding activity compared to 
walking and any effort to lessen and investigate these factors 

during real-world navigation can lead to newer devices that may 
further independence, and equality for these marginalized 
populations [66]. 

This study set out to apply the Neuroergonomics approach 
[67] to explore the effects of environment, user type and 
interface for wheelchair control. We designed environments 
with everyday scenarios WU navigate. Additionally, 
experienced WU (whose main means of locomotion involves 
daily use of a wheelchair) were recruited as well as people new 
to wheelchair use (novices), in order to gain an understanding 
of how experience of wheelchair control may interplay with 
other factors and impact dependent variables. 

A. Cognitive Workload Impact of Environmental Conditions 
 Environmental complexity as related to task demands, are 
correlated with increased CL [68], and within this study, both 
task performance metrics and brain measures yielded 
complementary information, giving strong evidence that a 
complex environment can lead to increased CL within 
wheelchair control. Specifically, the complex environment led 
to increased time (see Table I) and increased HbO within the 
mFG and iFG (see Fig. 4). The mFG plays a critical role within 
reorienting attentional control to behaviorally relevant 
environmental information [69], as well as motor inhibition 
[70]. The iFG is important in attentional, and inhibitory control 
of motor skills [71, 72]. The mFG, and iFG are involved within 
dual-task performance involving motor tasks [73].  

B. Cognitive Workload Impact of Interface Conditions 
The results (see Table I) indicated that the PowerAssist and 

manual interface had equal (no significant difference) error 
performance within a complex environment. Additionally, the 
PowerAssist interface did not significantly increase speed or 
decrease completion time as hypothesized. These suggest that 
the PowerAssist interface may be behaviorally similar to a 
typical manual wheelchair interface, with less physical effort, 
but with no improvement to function/safety consistent with a 
recent survey [33]. Furthermore, the overall use of the 
PowerAssist interface did not lead to different, or decreased CL 
within either the inferior, middle, or superior frontal gyri.  

However, it is of noticeable importance that different user 
types experienced the interfaces differently (see Fig. 10). The 
manual interface increased CL within the iFG more for 
experienced WU than novices. This is further supported by 
Woods et. al, where it was found that the iFG had greater 
activation for experienced individuals during familiar 
conditions  [74] (i.e. manual wheelchair control). This gives 
evidence that those with expertise are more attuned to familiar 
motor tasks and have greater activation in brain areas regarding 
motor planning. Additionally, the left sFG had decreased HbO 
(see Fig. 10 right) in line with research demonstrating that it is 
often deactivated during cognitive-related processing [75]. This 
deactivation was more pronounced for experienced WU than 
novices when using the PowerAssist interface, implying that 
WU during PowerAssist may activate the default mode network 
(DMN) or task-negative mode, a large scale brain network that 
is considered to be involved with involuntary actions, because 
their tasks became or perceived to be significantly more simple 
[75, 76]. 

Experienced – Novice

Simple Complex

LR LR

Fig 9. fNIRS results comparing 29 novices and 18 experienced WU, 
displaying PFC HbO between environments (Simple and Complex). The 
Complex Environment lead to increased HbO for experienced WU (right) and 
the Simple Environment (left) played no role in differing activation patterns 
between Experience Groups. (FDR corrected, q<0.05) 

Experienced – Novice

Manual PowerAssist

LR LR

Fig 10. fNIRS results comparing Experience Groups interaction with different 
Interfaces, displaying PFC HbO. The manual interface lead to increased HbO 
for experienced WU (left) and the PowerAssist interface decreased HbO for 
those with more experience. (FDR corrected, q<0.05) 
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C. Cognitive Workload Impact of Expertise 
Overall user type was not associated with any particular 

decrease in error reduction, however, did lead users to be 
significantly faster and therefore more efficient. Increased 
expertise can lead to decreased CL (determined via evaluation 
of speed/timing [36]) and is supported within this study’s task 
performance metrics which offer an indirect insight in CL.  This 
information is further validated by the brain measures (see Fig. 
8) where the difference of user type led to a different pattern of 
activation (increased HbO within the iFG, and decreased within 
the sFG) [74-76]. sFG is known to contribute to higher 
cognitive functions particularly working memory, with 
particular regard to spatial cognition [77]. Furthermore, 
previous studies suggest that the supplementary motor areas 
may extend into parts of the sFG, playing a role in higher 
cognitive processing within motor control [78].  

Furthermore, similar information between the performance 
and brain measures were found when exploring the interaction 
effects of environment on expertise. In Figure 3, the complex 
environment led to an increased completion time only for 
experts when compared to the simple environment. Novices had 
the same completion time for both environmental conditions, 
and both were significantly higher compared to experienced 
individuals. Similarly, the complex environment showed an 
increase in HbO within the iFG (see Fig. 9, right). In the simple 
environment, no brain activity difference (see Fig. 9, left). On 
the contrary, completion time showed a significant difference 
between user types (increased time and hence CL for novices). 
This may represent that at the same brain activity level, those 
with expertise are able to achieve better performance (and 
therefore more efficient) as suggested by neural efficiency 
concept [79-81].  
D.  Holistic Outlook  

In summary, the neuroergonomic approach within this study 
highlights the importance of a comprehensive evaluation 
opportunity in identifying the CL impact of wheelchair 
interfaces and dynamics environments by combining brain and 
behavioral performance measures. As new generation assistive 
devices emerge, it becomes more important to investigate their 
mental workload implications within ecologically valid 
settings. While there are no current study publications that these 
results can be similarly compared to, a recent clinical trial 
evaluating the physical workload between three different PADs 
suggest similar findings of increased performance with the use 
of each PAD over traditional manual control [82] which are 
similar to our own findings involving ECG before [83].  
E. Limitations and Future Work 

In this study, we applied a new generation of mobile and 
wearable neuroimaging to measure prefrontal function of 
physically active participants. We were only able to monitor the 
prefrontal cortex due to the limitations of the available sensors, 
however other brain areas including the motor and parietal 
cortices could be informative in future studies. Additionally, no 
short-separation channels were used which could have been 
useful to reduce the influence of systemic physiological 
artefacts arising from superficial blood flow [84]. Furthermore, 
we conducted the experiment in an indoor controlled facility. 
However, wheelchair studies involving even more realistic 

conditions and actual everyday settings can offer more insights. 
Future work may involve the assessment of cognitive decline 
for wheelchair control, as many WUs experience cognitive 
impairment, and the use of power assistive wheelchairs may 
play an important role. 

V. CONCLUSIONS 

In summary, this is the first study to our knowledge, using a 
comprehensive neuroergonomic approach to monitor CL 
implications of environmental complexity, different wheelchair 
interfaces, and user experience levels with mobile fNIRS in a 
real-world setting with actual experienced WU. Our findings 
support the importance of a comprehensive assessment 
methodology, using integrated task performance and 
neurocognitive metrics. Across all subjects, environmental 
difficulty reduced wheelchair performance and increased brain 
activity. Secondly, the augmentation of PowerAssist did reduce 
the mental effort burden specifically for novices, and even more 
specifically for novices within the more difficult environment. 
This is important because it could provide better conditions for 
motor learning of safe maneuvering especially in more complex 
environments. Finally, brain activity differences between 
experienced and novices only emerged again only during the 
more difficult complex environment.  

Ultimately, real-world mobile brain imaging can offer unique 
insights for the personalization of mobility devices, and 
assessing the effectiveness of newer mobility interfaces, or their 
interaction with different environmental difficulties in 
wheelchair control for both new and experienced users. 
Understanding the factors in reducing/optimizing the cognitive 
workload within disability interfaces and motor tasks like 
wheelchair control is vital to improve daily life.  
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