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Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic
static FC analysis, brain networks under task and rest have been demonstrated a general similarity.
However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC
inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a
suitable technique to characterize the brain’s dynamic and adaptive activities. In this study, we adopted
k-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks
and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state
brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to
test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-
related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy
subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in
REST and one principal FC state in HCO were identified. The first principal FC state in REST was
found similar to that in HCO, which appeared to represent intrinsic network architecture and validated
the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in
REST with much shorter “dwell time” implied the transient functional relationship between DMN and
MN during REST. In addition, a more frequent shifting between two principal FC states indicated that
brain network dynamically maintained a “default mode” in the motor system during REST, whereas
the presence of a single principal FC state and reduced FC variability implied a more temporally stable
connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results
further demonstrated that dynamic FC analysis could offer unique insights in understanding how the
brain reorganizes itself during rest and task states, and the ways in which the brain adaptively responds
to the cognitive requirements of tasks.

Keywords: Dynamic functional connectivity; functional magnetic resonance imaging; functional connec-
tivity state; k-means clustering; default-mode network; motor function.

1. Introduction

The resting-state brain is believed to operate under
a “default mode” in the absence of specific cogni-
tive demands, which is expected to be a state of
readiness for upcoming tasks.1–3 The understand-
ing of how brain networks establish the “default
mode” and reorganize spatiotemporally in response
to tasks is critical for revealing the underlying
adaptation within the brain during cognitive pro-
cesses.4–9 So far, several studies have examined
the task-related modulation of brain networks,
and reported a decrease of default-mode network
(DMN) functional connectivity (FC) during exter-
nally oriented cognitive tasks,10,11 and an increase
of an inter-network FC between DMN and other
task-related areas during internally oriented men-
tal activities.12,13 Although task-modulation of FC
has been established, overall similarities in the
spatial patterns of brain networks have been reported

during rest and a variety of other tasks. This phe-
nomena is often attributed to intrinsic network
architectures present in both rest and tasks.14–18

Nonetheless, FC in these studies was estimated using
the whole time course under the assumption that
the brain networks would be relatively stable dur-
ing the recording process. However, this assumption
may not be entirely justified as brain activities and
cognitive processes are known to be dynamic and
adaptive,19,20 an observation that has been repeat-
edly confirmed by time–frequency analysis21 as well
as dynamic FC analysis.22 Thus, investigation of the
spatiotemporal modulation of dynamic brain net-
works during tasks may further help to understand
the adaptation of brain to cognitive process require-
ments.18,23–25

Dynamic brain activities have been extensively
studied using EEG methods and commonly observed
functional microstates have been considered to form
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the basic building blocks of information process-
ing.26–33 fMRI-based investigations using dynamic
FC have been the focus of recent methodologi-
cal innovations and studies are also accumulat-
ing.23,24,34,35 Dynamic FC has been explored in fMRI
using sliding window correlation analysis to examine
time scales ranging from seconds to minutes.21,36–38

These studies demonstrated that dynamic FC anal-
ysis not only delivers a more complete description
of the temporal dependence of the brain’s organi-
zation during cognitive processes, but also this per-
spective provides clinically valuable information. For
example, schizophrenia patients exhibited shorter
states of strong and large-scale FC than healthy con-
trols during rest, which cannot be observed when
using static FC analysis.37 Another study of dynamic
FC in Alzheimer’s disease patients showed longer
state persistence in the strong anterior DMN sub-
network, but shorter states in the strong poste-
rior DMN sub-network when compared with healthy
elderly subjects during rest.38 For the cognitive pro-
cess during rest, a recent resting-state dynamic FC
study reported that multiple FC states could co-
exist, which was interpreted as an indication of the
unconstrained mental activities of resting state,36 an
observation further supported by positive correla-
tion between frequency of “mind-wandering” and FC
variability (FCV) in core regions of interest (ROIs)
in DMN.39 In addition, another study suggested that
resting-state FC fluctuations reflected both the con-
tinuous stream of ongoing cognitive process as well
as the fixed anatomical connectivity matrix.40

The above studies showed that the dynamic FC
could depict the underlying ongoing cognitive pro-
cess during rest. Furthermore, the spatiotemporal
dynamics of brain networks during task may pro-
vide more insights into the adaptation of the brain in
response to modulated cognitive processes.23,24 How-
ever, investigation on the task-related modulation of
dynamic FC is still in an early stage. To the best of
our knowledge, only one study has used dynamic FC
to investigate the task-related modulation of FCV41

so far, and found significant task-related decreases
of FCV at the regional, network and system levels.
In addition, the task-induced decrease in FCV was
significantly correlated with task performance. It was
proposed that the task-related reduction in FCV was
likely related to the stabilization of the FC pattern
to a certain task-specific functional organization.

Nevertheless, FCV is still a relatively simple mea-
sure, which can only quantify the overall tempo-
ral pattern of dynamic FC, but ignore the spatial
pattern of the networks. New methods are needed
to depict the detailed spatiotemporal dynamics of
brain networks during both rest and task. Thus,
we propose to use k-means clustering to investi-
gate spatiotemporal patterns of dynamic brain net-
works during both rest and task. Based on previ-
ous findings by static and dynamic FC analysis, we
hypothesize the presence of overall spatial similarity
but distinct temporal patterns between the rest and
task.

In order to test this hypothesis, we analyzed the
spatiotemporal patterns of the principal dynamic
FC states at rest and how they were modulated
spatiotemporally by a task. The hand closing-and-
opening (HCO) task was utilized in this study for
its easiness to perform and its ability to effec-
tively activate the motor system,42–44 and its exten-
sive interests in studies on upper limb rehabilita-
tion after stroke.45–47 Investigating the alteration of
the dynamic brain networks during HCO may also
help understand the mechanisms underlying stroke
rehabilitation. In addition to the motor-related net-
works (represented by MN hereafter) activated by
HCO, DMN has also been demonstrated to be a key
network in motor task performance and other cog-
nitive processes.1,48,49 Studying the dynamic rela-
tionships between MN and DMN during rest as well
during HCO could help to reveal the brain’s cog-
nitive adaptation to task demands. Therefore, both
DMN and MN were of interest in this study. Prin-
cipal dynamic FC states were identified by k-means
clustering of sliding windows.22,36 We then compared
the spatiotemporal patterns of principal FC states
as well as the FCV under both rest and HCO condi-
tions.

2. Materials and Methods

2.1. Participants

28 healthy right-handed subjects volunteered for this
study and two subjects were excluded because of
excessive head motions (maximal head motion above
2 mm or 2◦). As a result, data of the 26 subjects
(male/female: 13/13; age: 54.9 ± 6.3 years) were
used for further analysis. All subjects provided the
written informed consents. Procedures were reviewed
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and approved by the Ethics Committee of Shanghai
Second People’s Hospital, Shanghai, China.

2.2. Task design

The fMRI experiment for each subject consisted of
two FC sessions (REST and HCO) and one block-
design activation session. During REST session, sub-
jects were instructed to remain motionless, relaxed
and awake. During HCO session, subjects were asked
to perform HCO with the instructed hand at a rate
of one time per second, paced by the cues on the
display. In both REST and HCO sessions, 4min and
20 s data were used for FC analysis. The third session
was a block-design task consisting of six REST blocks
alternated with five HCO task blocks, preceded by an
8 s inter-task period. Each block lasted for 20 s. This
block-design session was used to generate candidate
ROIs of the MN for FC analysis. All subjects were
divided into the left-hand group (LHG, n = 16) or
the right-hand group (RHG, n = 10). Subjects were
instructed to use their hands as required during HCO
task performance.

2.3. Image acquisition

All images were acquired with a 3.0 T Signa Excite
Gemse MRI system (GE Healthcare, Milwaukee,
WI, USA) at Rui Jin Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai, China.
The head of the subject was snugly fixed by a
foam pad to reduce head movements and scanner
noises. Three-dimensional (3D) structural MRI was
acquired from each subject using a T1-weighted
MPRAGE sequence (TR = 5.6 ms; TE = 1.7 ms;
flip angle = 12◦; matrix size = 256 × 256; voxel size
= 1 × 1 × 1 mm3), yielding 196 contiguous sagit-
tal slices (1mm thick) covering the whole brain.
Blood-Oxygenation-Level-Dependent (BOLD) data
were acquired with an EPI sequence (TR = 2000 ms;
TE = 30 ms; flip angle = 90◦; matrix size = 64× 64;
voxel size = 3.75 × 3.75 × 4 mm3) for each subject.

2.4. FC data preprocessing

For both REST and HCO periods, identical pre-
processing procedures were performed using SPM8
(Wellcome Trust Centre for Neuroimaging, Univer-
sity College London, London, UK) and MATLAB
scripts from the DPARSFA toolbox.50 The data

of the first 10 s (five volumes) were discarded to
avoid magnetization equilibrium effects and to allow
the subjects to get ready for the experiments. The
remaining fMRI data were spatially realigned to the
mean image and then were slice-timing corrected
using the middle slice as the reference frame, de-
trended and band-pass filtered (0.01–0.08Hz). In
addition, the fMRI data were co-registered with each
subject’s anatomical data using mutual information
as the cost function. fMRI data were interpolated
using 4th degree B-spline method.50 for its lower spa-
tial resolution than anatomical images. The anatom-
ical images were then segmented.51 Spherical ROIs
with 10mm diameter were centered at predefined
coordinates and warped to the subject’s native brain-
space based on the deformation field obtained from
segmentation step. The representative BOLD time
course for each ROI was defined as the average over
all voxels within the ROI in the native brain space.
Nuisance covariates, including Friston 24 parameters
of head motion,52 white matter and cerebrospinal
fluid signals were then regressed out from the rep-
resentative BOLD time courses.

2.5. Motor network ROI identification

In order to define the motor-related brain regions,
activation based on block-design session was ana-
lyzed. Separate preprocessing was performed for
block-design session data with SPM8 and DPARSFA
toolbox, including spatial realignment to the mean
volume of a series of images, slice-timing correction,
co-registration, spatial normalization to the Mon-
treal Neurological Institute (MNI) template, spa-
tial smoothing (4 mm isotropic kernel) and high-
pass filtering (eliminating slow signal drifts with a
period longer than 128 s). For the first-level analy-
sis of each subject, generalized linear model (GLM)
in SPM8 was used to generate the individual acti-
vation map. Boxcar vectors for task blocks were
convolved with the hemodynamic response function
(HRF) and the head movement parameters were
included as covariates to remove head motion arti-
facts. One-sample t-test based on single-subject con-
trasts obtained in the first-level analysis were per-
formed for LHG and RHG, respectively, resulting
in group-level activation mappings (p < 0.001) (see
Table A.1 in Appendix A for details). By com-
bining group-level activation maps of LHG and
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RHG, we obtained the MNI coordinates of 44 acti-
vated motor-related brain regions (see Table A.2 in
Appendix A for details).

2.6. Analysis of dynamic FC

ROIs in this study included regions in MN and DMN.
For MN, the coordinates of the 44 activated local
maxima obtained during the block-design session
were regarded as the coordinates of ROIs. The coor-
dinates of the 46 ROIs in DMN were defined accord-
ing to Ref. 54 (Table A.3 in Appendix A for details).
Thus, there were a total of 90 ROIs in the network-
of-interest (denoted as DMN-MN hereafter) in total.
The representative BOLD time courses of all ROIs
were obtained by the methods in Data Preprocessing
section.

For each subject, representative BOLD time
courses of REST and HCO were analyzed by slid-
ing windows (size: 30 TRs or 60 s each) with a step
of 1 TR (2 s), resulting in 96 windows in total.36,41

Within each sliding window, Fisher-transformed
correlations were calculated between representative
BOLD time courses of every pair of ROIs and a
90 × 90 association matrix was estimated.

2.7. Clustering

In order to identify reoccurring FC states, the
k-means clustering algorithm54 was implemented to
classify the sliding windows into a set of sepa-
rate clusters by their association matrices. L1 dis-
tance function (Manhattan distance or L1-norm)
defined as

d1(p,q) =
n∑

i=1

|(pi − qi)| (1)

was used to estimate the within- and between-
clusters distances,55 where d1(p,q) represents the
L1 distance between two vectors p,q in an
n-dimensional real vector space, pi and qi represent
the ith elements of p and q, respectively.

As described by Allen and colleagues,36 two-step
clustering was used. In the first step, the sliding win-
dows with local maxima in spatial variance of asso-
ciation matrices were selected as exemplars for each
subject. Then, k-means clustering was performed on
those exemplars selected from subjects. The cluster-
ing was repeated 100 times independently with a ran-
dom initial centroid position every time and the best

result was selected so as to increase the chance of
escaping the local minima. The optimal number of
clusters was determined based on the elbow crite-
rion of cluster validity index, i.e. the ratio of within-
cluster distances to between-cluster distances using
k from 2 to 10.36 For LHG, one set of exemplars
was selected from sliding windows of 16 subjects for
REST and HCO, respectively. For the clustering of
exemplars in LHG, the optimal numbers of clusters
were estimated as 6 (i.e. k = 6) in each session (REST
and HCO). With respect to RHG, identical proce-
dures were performed and k = 4 was estimated as
optimal in each session (REST and HCO). In the
second step, the centroids of resulting clusters for
each session and each group were used to initialize
the clustering used in the analysis of the full sliding
time-windows.

2.8. FCV analysis

FCV was estimated to further examine the tempo-
ral patterns of dynamic FC during both REST and
HCO in each network: DMN, MN, DMN-MN and the
inter-network connecting DMN and MN (denoted as
iDMN-MN hereafter). FCV of a network was esti-
mated by calculating the standard deviation of the
averaged FC strength in a network across all sliding
time-windows,39,41 that is,

FCV =

√√√√ 1
M

×
M∑
i=1

(x̄i − X̄)2, (2)

where x̄i represents the mean strength of FC among
networks in the ith window, X̄ represents the mean
of x̄i across all sliding windows, and M is the number
of the windows.

2.9. Statistical analysis

In order to evaluate how the task modulated the
temporal patterns of FC states, the frequency of
state shifting (number of shifting times between FC
states within 125 TR-long recording time) was com-
pared between REST and HCO for both LHG and
RHG. Since the frequency of state shifting was count
data, they did not follow a normal distribution and
ANOVA was not considered statistically appropriate.

According to previous studies, GLM with
Poisson-distributed error can be used to perform sta-
tistical analysis for count data.56,57 Nonetheless, the
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Poisson distribution requires the mean equals to the
variance, whereas the variance of our data was signifi-
cantly larger than the mean, which is called “overdis-
persion”. Thus, the best option for our data is to
specify that the data follow the negative binomial
distribution according to the previous studies.58,59

A GLM with negative binomial-distributed error was
used to examine the effect of session (REST versus
HCO) as well as group (LHG versus RHG) on the
state shifting frequency.58,59 The negative binomial
regression model is as follows:

µ̃ij = exp(α + β1sj + β2gi), (3)

where µ̃ij is the expected state shifting frequency for
subject i (i =1 to N ; N =26) during session j (REST
and HCO), sj represents the categorical variable of
the session (i.e. sj = 1 for REST; sj = 0 for HCO), gi

represents the categorical variable of the group (i.e.
gi = 1 for subjects in LHG, gi = 0 for subjects in
RHG), β1 and β2 are the coefficients to be estimated
and α is the intercept. If the estimated β1 is signifi-
cantly greater (less) than zero, the statistical result
would indicate that the state shifting frequency dur-
ing REST is greater (less) than that during HCO. If
the estimated β2 is significantly greater (less) than
zero, the statistical result would indicate that the
state shifting frequency of LHG is greater (less) than
that of RHG. Incidence rate ratio (IRR, i.e. exp(β))
was calculated,59 which indicates the relative differ-
ence of state shifting frequencies between two cate-
gories (e.g. REST versus HCO; LHG versus RHG).
Taking β1 as an example, with all other factors being
equal, the greater the IRR(β1) is, the greater the
state shifting frequency in REST is, compared with
that in HCO. In addition, the Chi-square goodness-
of-fit test was conducted to how much the data could
fit a negative binomial model.60

3. Results

3.1. FC states by k-means clustering

As estimated by the elbow criterion of cluster valid-
ity, which was calculated as the ratio of within-
cluster distance to between-cluster distance follow-
ing the previous studies,36,37 the optimal number of
clustering FC states was six in LHG and four in RHG
in both REST and HCO states. In both groups, only
two principal FC states were identified in all sub-
jects (see Fig. A.1 in Appendix A for details) during

REST. The remaining FC states during REST (four
FC states in LHG and two FC states in RHG) were
absent in multiple subjects. While in HCO condition,
only one principal FC state was identified in each
group (see Fig. A.1 for details). Centroids of the prin-
cipal FC states for REST and HCO in both groups
were illustrated in Fig. 1. Similarities of principal
FC states between LHG and RHG were estimated
through correlational analysis, indicating significant
similarities between the principal FC states in two
groups (i.e. the first principal FC state of LHG REST
and RHG REST: R = 0.619, p < 0.001; the second
principal FC state of LHG REST and RHG REST:
R = 0.449, p < 0.001; the first principal FC state of
LHG HCO and RHG HCO: R = 0.672, p < 0.001).
In addition, in both groups, significant similarity was
observed between the principal FC state in HCO
and the first principal FC state in REST (i.e. LHG:
R = 0.716, p < 0.001; RHG: R = 0.626, p < 0.001).

3.2. Dwell time ratios of principal FC
states in REST

To understand the temporal patterns of dynamic FC
in REST, we examined the “dwell time” of the two
principal FC states in REST. Dwell time ratio, i.e.
the number of windows in one principal FC state over
the total number of windows, was defined to quantify
the “dwell time” of the corresponding state. Mixed-
design ANOVA with one between-subjects variable
(i.e. GROUP: LHG versus RHG) and one within-
subjects variable (i.e. STATE: the first principal FC
state versus the second principal FC state) was per-
formed. The main effect of STATE was significant
(F (1, 19) = 4.773, p = 0.042), but the main effect
of GROUP was not observed (Fig. 2). The statisti-
cal results demonstrated that the “dwell time” of the
first principal FC state was significantly longer than
that of the second principal FC state in REST for
either LHG or RHG.

3.3. Difference between two principal
FC states in REST

In addition to “dwell time”, FC pattern between
the two principal FC states was also investigated for
both LHG and RHG. Paired t-test showed signifi-
cantly different FC between two principal FC states
in REST (p < 0.01). For LHG (Fig. 3(a)), among the
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Fig. 1. (a, b) Centroids of two principal FC states of REST in LHG; (c) centroid of the only principal FC state of HCO
in LHG; (d, e) centroids of two FC principal FC states of REST in RHG and (f) centroid of the only principal FC state
of HCO in RHG. DMN: ROI 1 to ROI 46; MN: ROI 47 to ROI 90.

132 significantly different connections, 13 (percent-
age in all connections in DMN: 13/1035 = 1.26%)
corresponded with the DMN, and 46 (46/946 =
4.86%) were found in the MN and 73 (73/2024 =
3.61%) were present in the iDMN-MN. For RHG
(Fig. 3(e)), 147 significantly different connections
were identified, with 11 (1.06%) located in the DMN,
41 (4.33%) in the MN, and 95 (4.69%) were asso-
ciated with iDMN-MN. For both LHG and RHG,

all significantly different connections increased in
strength during the second principal FC state in con-
trast to the first principal FC state of REST. The
majority of significantly different connections were
located in the iDMN-MN for both LHG and RHG.
As the matrix of principal FC state was symmet-
ric, only the lower part of diagonal was shown in
Figs. 3(a) and 3(c). Figure 3 also presents the ROIs
and significant connections between other regions.
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Fig. 2. Boxplots of dwell time ratio of principal FC
states in LHG and RHG in REST.

We observed that there were less significantly differ-
ent connections in the DMN compared with MN and
iDMN-MN networks in both LHG and RHG groups.

In addition to the specific differences in FC, the
overall similarities of the DMN, MN, and iDMN-
MN networks with the principal FC states were also
investigated by correlational analysis (correlation
coefficient was r-to-z transformed by Fisher transfor-
mation) for each subject. Mixed-design ANOVA with
one between-subjects variable (i.e. GROUP: LHG
versus RHG) and one within-subject variable (i.e.
NETWORK: DMN, MN, and iDMN-MN) was per-
formed. Post-hoc comparisons of transformed corre-
lation coefficients in each network (i.e. DMN, MN
and iDMN-MN) were adjusted using Bonferroni cor-
rection. It was noted that the transformed correla-
tion coefficients of iDMN-MN between the principal
FC states were significantly smaller than those of
either DMN or MN (Fig. 4).

3.4. Differences in state shifting
frequency between REST and HCO

In order to compare the dynamic patterns of the
networks in REST and HCO, we investigated the
state shifting frequency (i.e. number of shifting times
across different FC states including nonprincipal
states) in both groups. Table 1 lists the results of
negative binomial regression model estimation. The
estimated coefficient for session type variable (1 for
REST and 0 for HCO) was positive and significantly
different than zero (p = 0.030). Even though the
coefficient of group variable (1 for LHG and 0 for

RHG) was also positive, it did not significantly differ
from 0. The IRR for the session variable was 3.212,
indicating that with all other factors being equal,
an average increase of 212.2% in the state shift-
ing frequency was observed during REST compared
with HCO. The statistical results suggest that state
shifting frequency was significantly increased during
REST compared with HCO in either group. In addi-
tion, Chi-square goodness-of-fit test suggested that
the negative binomial model could be appropriately
used to fit the data since the null hypothesis that
the data were consistent with the negative binomial
model could not be rejected (p = 0.191).

3.5. Different FCV between REST and
HCO

For each subject, the FCVs of DMN, MN, DMN-MN,
iDMN-MN were calculated for both REST and HCO.
Mixed-design ANOVA with one between-subject
variable (i.e. GROUP: LHG versus RHG) and one
within-subject variable (i.e. SESSION: REST ver-
sus HCO) was performed for each network exam-
ining the effect of session on the FCV. Significant
main effect of session type was found on FCV of the
DMN-MN (F (1, 24) = 5.466, p = 0.028), MN FC
(F (1, 24) = 9.131, p = 0.006) and iDMN-MN FC
(F (1, 24 = 6.404, p = 0.018) (Fig. 5). These results
suggest that the FCV of the DMN-MN network,
MN, and iDMN-MN significantly decreased during
HCO compared with REST for both LHG and RHG
groups.

4. Discussion

In this study, the dynamic FC of brain networks
including DMN and MN, as well as their variabil-
ity (FCV), was examined using sliding windows and
k-means clustering. Principal FC states were iden-
tified and their spatiotemporal patterns were com-
pared between REST and HCO. During REST, two
principal FC states were identified in both the LHG
(Figs. 1(a) and 1(b)) and RHG (Figs. 1(d) and 1(e)),
with significant similarities between the two groups.
For HCO, a single principal FC state was identified in
LHG (Fig. 1(c)) and RHG (Fig. 1(f)), which also fea-
tured a significant similarity between the two groups.
These results indicated a correspondence of princi-
pal FC states between two groups in both REST
and HCO experimental conditions. When comparing
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Fig. 3. (Color online) Illustration of significantly different FC between the principal FC states of REST in LHG (a) and
RHG (e); ROIs in DMN (blue nodes) connected by significantly different DMN FC in LHG (b) and RHG (f); ROIs in
MN (red nodes) connected by significantly different MN FC in LHG (c) and RHG (g); and ROIs in DMN (blue nodes)
and MN (red nodes) connected by significantly different iDMN-MN FC in LHG (d) and RHG (h). The size of the nodes
indicates the ROI degree of connectivity (i.e. the number of significantly different FC connected to ROI). Notes: PCC =
posterior cingulate cortex; mPFC = medial prefrontal cortex; SFG = superior frontal gyrus; MTG = middle temporal
gyrus; M1 = primary motor cortex; S1 = primary somatosensory cortex; SMA = supplementary motor cortex; STG =
superior temporal gyrus; ACC = anterior cingulate cortex; IFG = inferior frontal gyrus; PMC = premotor cortex; AG =
angular gyrus; Cb = cerebellum; PHG = parahippocampal gyrus.
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Fig. 4. Boxplots of similarities (indicated by correlation
coefficient, which was r to z transformed) of DMN, MN,
and iDMN-MN between two principal FC states in REST
for LHG and RHG, respectively.

Table 1. Estimated coefficients of negative binomial
regression model for IRR in state shifting frequency.

Estimate Std.
(IRR) error Z-value P -value

(Intercept) −1.486 0.582 −2.554 0.011∗
Coefficient 0.673 0.558 1.206 0.228
(Group) (1.960)
Coefficient 1.167 0.537 2.171 0.030∗
(Session) (3.212)

∗indicates the estimate is significant different from

zero.

principal FC states in REST and HCO, significant
similarity was also found between the single principal
FC state in HCO and the first principal FC state in
REST regardless of the hand used (Fig. 1). This find-
ing verified our hypothesis on the overall spatial sim-
ilarity of dynamic FC between rest and task states.

Previous studies on static FC have observed
overall FC similarity between rest and task.14–16

Specifically, Cole and colleagues used static FC to
investigate the similarities of large-scale networks,
which covered hundreds of brain regions encompass-
ing every major brain system between dozens of
task sessions and the resting state. Their results
proposed that task-state functional networks were
shaped primarily by an intrinsic network architec-
ture that was also presented during rest, and secon-
darily by evoked task-related network changes.17 In
another study on the relationship between structural

connectivity (SC) and FC, Hermundstad and col-
leagues found that structural properties (i.e. length,
number and spatial location of white matter fibers)
were indicative of the strength of FC in both rest
and task states.61 These results based on static FC
both proposed that the brain networks during both
rest and task states might be primarily shaped by a
common intrinsic network architecture. Our dynamic
FC study found similar principal FC states between
REST and HCO, which were the first principal FC
state in REST and the only principal FC state during
HCO. We observed that these two related principal
FC states were dominant during REST and HCO
as measured by dwell time ratios (Fig. 2). Thus,
we speculate that the common intrinsic network
architecture, which primarily shapes both resting-
state and task-state network in static FC study,
presents itself in similar dominating principal FC
states observed in REST and HCO. Despite these
similarities with static analysis, dynamic FC can pro-
vide more information than static FC. The second
principal FC state in REST might reflect a specific
mental activity in REST not presented during HCO,
and its absence in HCO might represent a focus
on motor task execution. A previous study demon-
strated that mental activity during rest was uncon-
strained and individuals could freely engage in sev-
eral types of mental activity.62 This unconstrained
mental activity might be represented in part by the
second principal FC state of REST in this study.

Though the second principal FC state in REST
might indicate unconstrained mental activity dur-
ing REST, what kind of brain activity it represents
and its role in the “default mode”, especially for
motor system, are still not well understood. From
the perspective of individual connection changes in
FC, differences between two principal FC states in
REST were most numerous in the iDMN-MN and
MN. In addition, all significantly different functional
connections increased in strength during the second
principal FC state compared with the first princi-
pal FC state (Fig. 3). Furthermore, from the per-
spective of overall network pattern, the differences
between these two principal FC states were mainly
observed in the iDMN-MN (Fig. 4). Strengthened
correlation between DMN and MN during the sec-
ond principal FC state of REST, is consistent with
previous findings that core ROIs in DMN, such as
PCC, most frequently engaged with non-DMN ROIs
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through inter-network FC.39,63 A recent study using
network control theory investigated how the brain
shifts between cognitive states based on network
organization of white matter microstructure. The
authors found that the “default mode” during rest-
ing state was a pluripotent “ground status” which
was easily able to migrate to multiple task-based sta-
tuses with less cognitive effort by using connections
between DMN and other networks.64 Taken together
with these findings, our results imply that during the
REST, DMN could be coordinating with MN, mani-
fested by the second principal FC state, to establish
a “default mode” of the MN and prepare for the sub-
sequent motor tasks. During HCO itself, maintaining
the “default mode” in motor system may have been
not necessary, resulting in an absence of a second
principal FC state.

In addition, according to the model described
in Table 1, the maintenance of “default mode” for
motor system in REST might be a dynamic process,
that is, the dynamic FC in DMN-MN network could
be observed to frequently shift between the two prin-
cipal FC states. Concordantly, FCV of the DMN-MN
network significantly decreased during HCO com-
pared with REST (Fig. 5(a)), a finding which was
also in line with recent findings during an attention
task.41 With respect to the individual networks, FCV
of MN and iDMN-MN also decreased during HCO
(Figs. 5(c) and 5(d)), while no significant change of
FCV was observed in DMN (Fig. 5(b)). Consider-
ing the findings of principal FC states, the increase
of FCV in iDMN-MN and MN was probably due to
the frequent shift between the principal FC states
in REST as the differences between two principal
FC states were mainly located in iDMN-MN and
MN. During HCO, such a dynamic maintenance of
“default mode” in motor system would disappear
and result in a stable and lower FCV in iDMN-
MN and MN,65 indicating more temporally stable
dynamic brain networks during HCO. These findings
verified our hypothesis that differences in temporal
patterns of dynamic FC between REST and HCO
still existed and could reflect distinct mental states
present in REST and HCO.

Unlike the MN and iDMN-MN, the FCV of
DMN did not change significantly in HCO compared
with REST, implying a special role for the DMN
in REST and HCO. During the REST, the DMN
might not only interact with MN, but also with

Fig. 5. (Color online) Demonstration of FCV in the
DMN-MN during REST and HCO in the LHG (a) and
RHG (e); FCV in the DMN in LHG (b) and RHG (f);
FCV in the MN in LHG (c) and RHG (g); and FCV
in the iDMN-MN in LHG (d) and RHG (h). Blue cir-
cles and each red diamonds represent FCV during REST
and HCO, respectively, for individual subjects. Error bars
with corresponding markers represent the mean and its
standard error of mean (SEM) across subjects.

other networks such as the auditory network, atten-
tion network, etc. When involved in a motor task,
the MN and iDMN-MN were relatively stable due
to an absence of influence of DMN on the motor
system, but the DMN might still be coordinating
with other networks to establish a “default-mode”
for other brain functions. Previous studies reported
that the FCV during resting state was partially
caused by the predominance of mind-wandering or
day-dreaming during this “uncontrolled” state.39,41

Another study suggested that mind-wandering might
be part of a larger class of mental phenomena that
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enable executive processes without diminishing the
potential contribution of DMN to other cognitive
functions.66 These descriptions correspond to our
speculation that DMN was coordinating with mul-
tiple function-related networks during REST and its
coordinating with nonmotor networks was not dimin-
ished during HCO.

In general, previous studies have used dynamic
FC to investigate either the dynamic brain net-
works during rest36,39,40,67,68 or how the resting-
state FCs are related to the physiologic or pathologic
states.37,38 However, in this study, we aim to investi-
gate how the motor task would affect the brain net-
works spatiotemporally, and particularly, how brain
networks establish the “default mode” and reor-
ganize spatiotemporally in response to a task. By
k-means clustering, this study found overall spatial
similarity of primary principal FC states, but distinct
temporal patterns of principal FC states between rest
and task states. Our findings could explain the con-
sistent network configuration,17 but distinct FCV41

between rest and task states. In addition, previous
study only examined the FCV during task,41 while
this study adopted k-means clustering, to reveal the
spatiotemporal details in the brain networks during
both rest and task states.

Furthermore, we would like to discuss several
methodological issues. First, Lloyds algorithm of
k-means clustering was used in this study.54 The
computation complexity of the algorithm is O(nkdi),
where n is the number of d-dimensional vectors, k

is the number of clusters and i is the number of
iterations for convergence. Taking the HCO data of
LHG as an example, the total computation time was
377.11 s.

Second, we note that the correlation between
a pair of BOLD time series is not an adequate
indication of a direct communication between two
brain regions, and it could be driven by a com-
mon source elsewhere, though the neural correlates
of FC69–71 and the correlation between FC and struc-
tural connections72,73 have been reported. However,
in this study, we only interpreted the increase of
FCs between DMN and MN in the second princi-
pal FC state as a strengthened functional relation-
ship between the two networks, no matter the func-
tional relationship is direct or not. In spite of such

a limitation, FC is still one of the best measures to
depict the correlation between brain regions in non-
invasive neuroimaging studies and has been widely
applied to cognitive neuroscience, neurological and
psychiatric disorders.74–78

Third, with respect to the interpretation of FC
fluctuation, a recent study suggested that the cor-
relation fluctuations could still exist between regions
with distinct amplitude spectra, whether or not there
are dynamic changes in neural connectivity between
them. That study also suggested that multivariate
analysis could distinguish the FC fluctuations caused
by neural activities.79 In this study, we used k-means
clustering, which is a multivariate analysis method,
to spatiotemporally cluster the FCs over all slid-
ing windows, connections and subjects into princi-
pal states. Thus, the fluctuations of the principal
states were not likely determined by the sliding
window correlation method only. Furthermore, we
created surrogate data by phase randomization in
Fourier domain, which preserved the mean, vari-
ance, amplitude spectra and temporal autocorrela-
tion, but disturbed the covariance structure of orig-
inal BOLD time series.80,81 The results showed that
the surrogate data had distinct spatiotemporal pat-
terns compared with original BOLD time series (see
Figs. A.2(a) and A.2(b) in Appendix A for details)
and the principal FC state of surrogate data did
not show any meaningful FC patterns like those
in the original BOLD time series (see Figs. A.2(c)
and A.2(d) in Appendix A for details), which further
supported that our findings of the FC spatiotempo-
ral patterns were not inherent from the method, but
with biological significance. In addition, several pre-
vious studies have also demonstrated the biological
significance of FC fluctuations.39–41

Finally, several limitations in this study should
be noted. First, the fMRI scan time period was rel-
atively short. Longer scanning time would increase
the reliability of the estimation of FC dynamics.
Second, FC states were identified by k-means clus-
tering, which although known as an efficient and
robust method with a tendency to converge at
a local minima. So, in this study, the clustering
algorithm was repeated 100 times independently
with random initial centroid position every time
to increase the chance to escape the local minima.
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In addition, there are alternative clustering meth-
ods (e.g. density-based or fuzzy-clustering method),
which may be better suited to dynamic FC analysis
and worthy of further investigation in further work.
Third, our study only investigated FC reorganization
with a motor task. Further studies on tasks involving
other cognitive domains should be done to examine
whether similar findings would exist for other cogni-
tive processes.

5. Conclusions

This study examined FC states and FCV in REST
and HCO using sliding windows and k-means cluster-
ing. Two principal FC states in REST and one prin-
cipal FC state in HCO were identified. The first prin-
cipal FC state in REST was similar to that in HCO,
which likely represented intrinsic network architec-
ture and validated the broadly similar spatial pat-
terns between REST and HCO. However, the pres-
ence of a second principal FC state with increased
iDMN-MN in REST with shorter “dwell time” could
imply the transient functional relationship between
DMN and MN to establish the “default mode” for
motor system. In addition, the more frequent shifting
between two principal FC states in REST indicated
that the brain networks dynamically maintained the
“default mode” for the motor system. In contrast,
during HCO, the presence of a single principal FC
state and reduced FCV implied a more temporally
stable connectivity, validating the distinct tempo-
ral patterns between REST and HCO. Our find-
ings suggested that the principal states could show
a link between the rest and task states, and veri-
fied our hypothesis on overall spatial similarity but
distinct temporal patterns of dynamic brain net-
works between rest and task states. These results
showed the effectiveness of dynamic FC analysis
when applied to brain activities during rest and task
states, and offer new insights into understanding the
adaptation of brain networks in response to task per-
formance.
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Appendix A. Supplementary Materials

A.1. Surrogate test

To test the effectiveness of the k-means clustering
method, we used a surrogate test to check differences
in FC states between original data and surrogate

Table A.1. Activated ROIs of LHG and RHG.

MNI coordinates (local
maxima)

X Y Z
T Z P -value (mm) (mm) (mm)

LHG

16.665 6.086 5.8 × 10−10 45 −21 60

11.807 5.425 2.9 × 10−8 36 −24 66

8.906 4.850 6.2 × 10−7 54 −21 45

14.153 5.778 3.8 × 10−9 −6 −54 −21

8.624 4.783 8.6 × 10−7 6 −63 −21

8.167 4.668 1.5 × 10−6 15 −60 −24

7.170 4.390 5.66 × 10−6 −12 −9 27

5.385 3.769 8.2 × 10−5 −12 0 27

6.774 4.268 9.87 × 10−6 −18 −60 −57

5.917 3.974 3.53 × 10−5 −6 −12 72

5.859 3.953 3.86 × 10−5 0 −9 57

5.427 3.786 7.66 × 10−5 0 −3 51

5.699 3.892 4.97 × 10−5 54 0 21
4.125 3.193 0.000704 57 3 30

5.532 3.827 6.47 × 10−5 51 −18 18

5.414 3.781 7.82 × 10−5 60 −15 18
4.724 3.484 0.000247 63 −21 12

5.379 3.766 8.28 × 10−5 −54 0 42
5.214 3.698 0.000108 −63 −21 15
5.186 3.687 0.000113 −45 −36 21
5.103 3.652 0.00013 18 −21 3
4.938 3.580 0.000172 −54 −24 24
4.895 3.561 0.000184 −51 −24 33
4.909 3.567 0.00018 −39 −9 60
4.462 3.361 0.000388 −33 −15 57

RHG

10.175 4.664 1.55 × 10−6 −51 −15 42

10.086 4.649 1.67 × 10−6 −42 −30 48
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Table A.1. (Continued)

MNI coordinates (local
maxima)

X Y Z
T Z P -value (mm) (mm) (mm)

7.473 4.119 1.89 × 10−5 −33 −33 39

8.683 4.388 5.72 × 10−6 27 −51 −27

7.964 4.234 1.15 × 10−5 18 −60 −33

7.367 4.093 2.13 × 10−5 12 −51 −27

8.119 4.269 9.84 × 10−6 51 −30 30
5.496 3.551 0.00019 42 −30 33

7.921 4.224 1.19 × 10−5 −54 6 0

6.977 3.994 3.24 × 10−5 −48 0 0

7.411 4.104 2.03 × 10−5 −51 −21 12

6.766 3.938 4.11 × 10−5 −63 −24 12
5.961 3.704 0.00011 −51 −33 12

6.727 3.927 4.29 × 10−5 48 6 3

6.583 3.888 5.06 × 10−5 6 −18 66
5.707 3.623 0.00015 6 −6 57
5.526 3.562 0.00018 0 −12 57
5.435 3.531 0.00021 −3 −15 48
5.706 3.622 0.00015 −45 −42 27
4.506 3.179 0.00074 −36 −45 30
5.057 3.396 0.00034 30 −54 9

data. Surrogate data were created by phase random-
ization in Fourier domain.80,81 As a result, the mean,
variance and temporal autocorrelation of surrogate
data generated from BOLD time series were identical
to the original BOLD time series, but the covariance
structure of each pair of original BOLD time series
was disturbed by randomization.

Table A.2. MNI coordinates of 44 activated motor-re-
lated ROIs (two ROIs in LHG overlapped with two
ROIs in RHG and were combined into two ROIs
through spatially averaging).

X Y Z X Y Z
No. (mm) (mm) (mm) No. (mm) (mm) (mm)

1 45 −21 60 23 −51 −24 33
2 36 −24 66 24 −39 −9 60
3 54 −21 45 25 −33 −15 57
4 −6 −54 −21 26 −51 −15 42
5 6 −63 −21 27 −42 −30 48
6 15 −60 −24 28 −33 −33 39
7 −12 −9 27 29 27 −51 −27
8 −12 0 27 30 18 −60 −33
9 −18 −60 −57 31 12 −51 −27

10 −6 −12 72 32 51 −30 30

Table A.2. (Continued)

X Y Z X Y Z
No. (mm) (mm) (mm) No. (mm) (mm) (mm)

11 0 (−10.5) 57 33 42 −30 33
12 0 −3 51 34 −54 6 0
13 54 0 21 35 −48 0 0
14 57 3 30 36 −51 −21 12
15 51 −18 18 37 −51 −33 12
16 60 −15 18 38 48 6 3
17 63 −21 12 39 6 −18 66
18 −54 0 42 40 6 −6 57
19 −63 (−22.5) 13.5 41 −3 −15 48
20 −45 −36 21 42 −45 −42 27
21 18 −21 3 43 −36 −45 30
22 −54 −24 24 44 30 −54 9

In order to compare the spatiotemporal FC pat-
terns between original data and surrogate data, FC
similarity matrices for both original and surrogate
data were generated, respectively. The (t1, t2) entry
of the FC similarity matrix provided the Pearson cor-
relation between the upper triangular parts of two
FC matrices at t1 and t2. According to Figs. A.2(a)

Table A.3. MNI coordinates of 46 ROIs in DMN.53

X Y Z X Y Z
No. (mm) (mm) (mm) No. (mm) (mm) (mm)

1 −44 −65 35 24 −3 44 −9
2 −39 −75 44 25 8 42 −5
3 −7 −55 27 26 −11 45 8
4 6 −59 35 27 −2 38 36
5 −11 −56 16 28 −3 42 16
6 −3 −49 13 29 −20 64 19
7 8 −48 31 30 −8 48 23
8 15 −63 26 31 65 −12 −19
9 −2 −37 44 32 −56 −13 −10

10 11 −54 17 33 −58 −30 −4
11 52 −59 36 34 65 −31 −9
12 23 33 48 35 −68 −41 −5
13 −10 39 52 36 13 30 59
14 −16 29 53 37 12 36 20
15 −35 20 51 38 52 −2 −16
16 22 39 39 39 −26 −40 −8
17 13 55 38 40 27 −37 −13
18 −10 55 39 41 −34 −38 −16
19 −20 45 39 42 28 −77 −32
20 6 54 16 43 52 7 −30
21 6 64 22 44 −53 3 −27
22 −7 51 −1 45 47 −50 29
23 9 54 3 46 −49 −42 1
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Fig. A.1. The FC states during Rest and HCO obtained through k-means clustering of sliding time-windows in LHG
and RHG. The number of subjects for each FC state is also shown in the title. Principal FC states were identified as those
that occurred in multiple subjects, while other observed FC states occurred in only a single subject.
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Fig. A.2. Illustration of the FC similarity matrices in original data (a) and surrogate data (b) of HCO in LHG as well
as the centroids of principal FC states in original data (c) and surrogate data (d) for a typical subject.

and A.2(b), the spatiotemporal FC patterns of sur-
rogate data were different from the original data.
There were segments of sliding windows with similar
FC patterns illustrated by blocks with high correla-
tion coefficients along the diagonal in FC similarity
matrices. For surrogate data, the sizes of these blocks
were approximately constant across time, resulting
in a strip with high correlation coefficients along the
diagonal in the FC similarity matrix (Fig. A.2(b)),
which was due to the inherent features of estimating
dynamic FC through sliding windows as the adjacent
windows had similar FC patterns. However, for the

original data, the sizes of blocks varied across time
(Fig. A.2(a)), which might be related to the under-
lying mental state.

If the clusters were inherent from the method
rather than based on spatiotemporal FC patterns,
the resulting clusters for surrogate data should
resemble the original data. However, the principal
FC states of surrogate data did not show any mean-
ingful FC pattern like those observed in the original
data. For example, the centroid of one principal FC
state obtained from surrogated data of HCO for LHG
(Fig. A.2(c)) does not show any network structures,
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such as DMN and MN in original data (Fig. A.2(d)).
Thus, these results demonstrated that the clusters
were classified based on the spatiotemporal patterns
of FCs.
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