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Abstract. Timing of the intervention for intracranial hematomas is critical for its success, specifically since
expansion of the hemorrhage can result in debilitating and sometimes fatal outcomes. Led by Britton
Chance, we and an extended team from University of Pennsylvania, Baylor and Drexel universities developed
a handheld brain hematoma detector for early triage and diagnosis of head trauma victims. After obtaining de
novo Food and Drug Administration clearance, over 200 systems are deployed in all Marine battalion aid stations
around the world. Infrascanner, a handheld brain hematoma detection system, is based on the differential near-
infrared light absorption of the injured versus the noninjured part of brain. About 12 independent studies have
been conducted in the USA, Canada, Spain, Italy, the Netherlands, Germany, Russia, Poland, Afghanistan,
India, China, and Turkey. Here, we outline the background and design of the device as well as clinical studies
with a total of 1293 patients and 203 hematomas. Infrascanner demonstrates high sensitivity (adults: 92.5% and
children: 93%) and specificity (adults: 82.9% and children: 86.5%) in detecting intracranial hematomas >3.5 mL
in volume and <2.5 cm from the surface of the brain. Infrascanner is a clinically effective screening solution for
head trauma patients in prehospital settings where timely triage is critical. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JBO.24.5.051411]

Keywords: near-infrared spectroscopy; medical device; traumatic brain injury; epidural; subdural; hematoma.

Paper 180549SSR received Sep. 16, 2018; accepted for publication Jan. 3, 2019; published online Feb. 4, 2019.

1 Introduction
Every year an estimated 1.5 million Americans incur head
injuries, which represents only a fraction of the head injuries
observed annually worldwide.1 While there are many aspects
of a head injury that must be addressed by a physician, the
most urgent of these is brain bleeding or intracranial hematoma.
Failure to detect and treat such injuries within the first several
hours significantly increases the possibility of severe neurologi-
cal deficits and even death.2,3 Patients with intracranial hemato-
mas often require surgery and therefore must be transported to
a trauma center that has neurosurgical coverage. This require-
ment highlights the need for rapid and accurate initial screening
for such injuries.

In rural and underdeveloped areas of the world as well as on
a battlefield, timely identification of patients who require sur-
gery can be difficult. Methods for identifying patients with hem-
atomas in these settings primarily include a neurological exam
and, when available, skull radiography. However, both of these
modalities are notably unreliable.4–6 Limitations of neurological
examination may stem from a variety of causes: (i) factors that
alter the patient’s level of consciousness, such as alcohol intoxi-
cation, drug use, shock, hypoxemia, and metabolic disturbances
interfere with the scale’s ability to accurately reflect the severity
of a traumatic brain injury (TBI). (ii) Patients who are intubated
with an endotracheal tube cannot talk, and the verbal component
of the score will be unavailable. (iii) A patient with a spinal
cord injury will make the motor scale invalid. (iv) Severe orbital
trauma may make eye opening impossible to assess. (v) Finally,
limited utility in children, particularly those <36months. A skull

radiography can identify the presence of a skull fracture, which
increases the probability of an intracranial hematoma. However,
many of the patients with intracranial hematomas do not have
a skull fracture. Moreover, fracture is not indicative of subdural
or intracerebral bleeding.4 The computed axial tomography
(CT) scan is the gold standard for identification and localization
of traumatic intracranial hematomas; however, its high cost and
limited availability restricts its use in many areas of the world,
and its high x-ray radiation poses risks for repeated scans and
especially for children and pregnant women.

To address this need, Britton Chance from University of
Pennsylvania and Claudia Robertson from Baylor College
of Medicine developed a near-infrared system for detection
of brain hematomas and tested it successfully at Baylor. In
collaboration with a Drexel University team, a medical product
was developed, obtained United States Food and Drug
Administration (FDA) clearance, and tested successfully around
the world. This collaborative effort resulted in Infrascanner,
a handheld brain hematoma detection system that is based on
the differential near-infrared light (NIR) absorption of the
injured versus the noninjured part of brain.7–10 Under normal
circumstances, the brain’s absorption can be assumed to be sym-
metrical. However, when additional underlying extravascular
blood is present, there is a greater local concentration of
hemoglobin. Consequently, the light absorbance is significantly
greater and the reflected component is commensurately less.
This differential is detectable via sources and detectors placed
on symmetrical sides of the skull.

Infrascanner development was supported initially by the
Office of Naval Research and later by the Marine Corps
Systems Command. So far, 12 studies have been published
with over 1200 patients having over 200 hematomas. The*Address all correspondence to Hasan Ayaz, E-mail: ayaz@drexel.edu
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studies were performed with diverse age populations and loca-
tions: USA, Canada, Spain, Italy, the Netherlands, Germany,
Afghanistan, Russia, Poland, India, China, and Turkey.11–23

This paper outlines the development of the Infrascanner system,
the first handheld device to aid in the detection of bleeding in the
skull and reviews results of the clinical studies.

2 Brain Injury Overview
ATBI can result either from nonpenetrating injury (whereby the
head suddenly and violently hits an object, but the skull remains
intact) or a penetrating head injury. Other types of acquired
brain injury such as stroke and meningitis are classified as
nontraumatic.24 A highly individualized injury, TBI severity
depends on the nature of the injury, strength of the force,
area of the brain affected, as well as physical and genetic var-
iations among patients. The damage from TBI can be localized
(focal), confined to one area of the brain, or diffuse, involving
more than one area of the brain.25,26

Types of focal brain injury include bruising of brain tissue
(contusion) and rupture of blood vessels inside the skull, thereby
resulting in heavy bleeding (intracranial hemorrhage or hema-
toma). Hemorrhaging can occur inside of the skull but outside of
the brain (extra-axial) or within the brain itself (intra-axial).
Extra-axial hemorrhages can be further divided into epidural
hematoma, subdural hematoma, and subarachnoid hemorrhage.
Intra-axial bleeding within the brain itself is called an intracere-
bral hematoma.

Diagnostic and treatment protocols mandate that a patient
suffering from head trauma receive immediate medical assess-
ment including a complete neurological examination.27 The
severity of the head trauma and the responsiveness of the patient
in a Glasgow Coma scale (GCS) evaluation will determine
which diagnostic methods will be used for further evaluation.28

In a GCS evaluation, the patient is scored on his/her ability to
open eyes, communicate verbally, and demonstrate motor skills.
However, the GCS evaluation can be very subjective based upon
the individual administering the test and can also be hampered if
the patient is under sedation or has restrictions on his/her ability
to verbally communicate (i.e., the patient has been intubated).

For patients with mild-to-moderate injuries, further diagnos-
tic tests may be limited to skull and neck x-rays to check for
bone fractures.29 For patients that have demonstrated moder-
ate-to-severe TBIs after undergoing a neurological examination,
the gold standard imaging test is a computed tomography (CT)
scan, which creates a series of cross-sectional x-ray images of
the head and brain and can show bone fractures as well as the
presence of hemorrhage, hematomas, contusions, brain tissue
swelling, and tumors. Magnetic resonance imaging (MRI)
uses magnetic fields to detect subtle changes in brain tissue con-
tent and with more detail than x-rays or CT and may be used
after the initial assessment and treatment of the TBI patient.29

TBIs can cause a host of physical, cognitive, emotional, and
social effects,30–32 and the eventual outcomes can be anything
from complete recovery to permanent disability or death. An
estimated 5.3 million individuals in the United States are living
with long-term or life-long disability associated with a TBI that
resulted in hospitalization. Unlike most causes of traumatic
death, a large percentage of the people killed by brain trauma
do not die right away but rather days to weeks after the traumatic
event. In addition, rather than improving after being hospital-
ized, some 40% of TBI patients deteriorate. Primary injury
(the damage that occurs at the moment of trauma when tissues

and blood vessels are stretched, compressed, and torn) is not
adequate to explain this degeneration. Rather, the deterioration
is caused by secondary injury resulting from a complex set of
biochemical cascades that occur in the minutes to days follow-
ing the trauma.33–35 These biochemical cascades are instigated
by brain swelling and inadequate flow of oxygen and blood to
the brain resulting from brain compression by the expanding
brain hematomas. The aim of the Infrascanner is to catch
hematomas before they incur any brain damage and enable
a much earlier intervention to evacuate the expanding brain
hemorrhages.

3 Types of Intracranial Hematomas after
Brain Injury

There are three major types of traumatic intracranial hematomas:
(1) subdural, (2) epidural, and (3) intracerebral hematomas.
Each of these lesions has characteristic clinical and CT scan
findings, which can be present on admission to the hospital
or can occur in a delayed fashion.36

3.1 Subdural Hematomas

The subdural hematoma is the most common focal intracranial
lesion, occurring as the primary initial lesion in 24% of patients
with severe closed head injuries in the traumatic coma data bank
(TCDB) and occasionally as a delayed lesion.37 The hematoma
is between the dura and the brain, usually resulting from a torn
bridging vein between the cortex and the draining sinuses. An
acute subdural hematoma typically appears on a CT scan as
a high-density, homogenous crescent-shaped mass paralleling
the inner surface of the skull.

Most acute subdural hematomas require surgery. Despite sur-
gical evacuation, the mortality rate in patients with subdural
hematomas was 50% in the TCDB series. The rapidity of sur-
gical evacuation and the degree of associated brain damage
are major determinants of outcome. Several studies report
a decrease in the early mortality or morbidity in patients who
underwent an early evacuation of subdural hematoma.

3.2 Epidural Hematomas

Epidural hematomas, or collections of blood between the skull
and dura, are less common, occurring as the primary initial
lesion in 6% of patients with severe closed head injuries in
the TCDB series.38 Epidural hematomas can be present on
the admission CT scan or less commonly may develop at
some later time. In a consecutive series of 161 patients with epi-
dural hematoma, 8% had delayed formation of the hematoma.39

The delayed epidural hematoma can develop after evacuation of
a hematoma on the opposite side or after a hypotensive patient
has been resuscitated. In addition, epidural hematomas can
recur after surgical evacuation. In a study of 88 patients with
postoperative hematomas, 47 patients with an epidural hema-
toma developed a postcraniotomy hematoma requiring a second
surgical procedure.

Although patients with subdural hematomas are usually
immediately comatose, only a third of patients with an epidural
hematoma remain unconscious from the time of the injury. Of
the remaining patients, one-third have a lucid interval, and one-
third are never unconscious. An epidural hematoma is almost
always associated with a skull fracture (91% in adults, and
75% in children).4 The blood comes from torn dural vessels
(usually arterial) from the fractured skull bone, or occasionally
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from torn venous sinuses. On CT scan, an epidural hematoma is
characterized by a biconvex, uniformly hyperdense lesion.
Associated brain lesions are less common than with subdural
hematomas.

Most epidural hematomas require surgery, and mortality and
morbidity of surgical evacuation are low if the patient is oper-
ated upon early. The outcome of the patient with an epidural
hematoma depends on the neurological status at the time of sur-
gery. The mortality rate varies from 0% for patients who are not
in coma, to 9% of obtunded patients, and up to 20% for patients
in deep coma.

3.3 Intracerebral Hematomas

Intracerebral blood can take the form of a hematoma or a con-
tusion. Intracerebral hematomas are more common, occurring as
the primary lesion in 10% of the severe closed head injuries in
the TCDB series.40 Most intracerebral hematomas are visualized
on CT scan as hyperdense mass lesions. They are typically
located in the frontal and temporal lobes and can be detected
on a CT scan immediately after the trauma. However, delayed
intracerebral hematomas may also be manifest during the hos-
pital course. A delayed hematoma is one that is seen on a repeat
CT scan within 24 to 48 h of the injury or operation but is not
present on the initial CT scan. Commonly, a delayed hematoma
is associated with clinical deterioration.

Hemorrhagic contusions were present as the primary lesion
in 3% of severe closed head injuries in the TCDB series.40

Single contusions are located either below the region of the
impact or opposite the region of impact. Contusions appear
as heterogeneous areas of brain necrosis, hemorrhage, and
infarct representing mixed-density lesions on CT scan. Multiple
focal contusions have a “salt and pepper” appearance on CT
scan.

The decision to operate on an intracerebral hematoma is
based on the patient’s general condition, associated brain inju-
ries, site and size of the hematoma, the intracranial pressure
(ICP), and the magnitude of the mass effect. Generally accepted
indications for surgery include (1) a hematoma associated with
mass effect or one located in the anterior temporal lobe or in
the cerebellum, (2) progressive neurological deterioration, or
(3) refractory intracranial hypertension.

3.4 Delayed Intracranial Hematomas

Delayed intracranial hematomas are a treatable cause of secon-
dary injury if identified early, but can cause significant disability
or death if not promptly recognized and treated. CT scanning
has revealed that delayed hematomas after head trauma are
more common than had been previously suspected. Recurrent
hematomas, postoperative epidural hematomas, and delayed
traumatic intracerebral hematomas occur in up to 23% of
patients with severe head injury. Mortality rates and the inci-
dence of a poor neurological recovery are significantly increased
in patients who develop delayed traumatic intracranial
hematomas.39,40 Early identification prior to neurological
deterioration is the key to successful surgical treatment.

Serial CT scans are the most reliable method for detecting
a delayed hematoma. However, CT scans require that patients,
many of whom are critically ill, be taken out of the intensive care
unit, and the yield is relatively low if serial scans are obtained in
all patients. A clinical monitoring technique for accurate selec-
tion of patients requiring follow-up CT scanning would improve

the yield. Nevertheless, current clinical monitoring techniques
are not ideal for detecting delayed hematomas. Patients with
delayed hematomas may appear to be relatively normal only
to undergo sudden neurological deterioration, or may not exhibit
a change in their neurological examination. ICP may be normal
in up to 20% of patients harboring delayed hematomas that
require surgery.40

The ideal clinical monitor would be capable of making
on-line continuous measurements in the intensive care unit
and would identify the development of a hematoma prior to
the onset of clinical neurological deterioration. Near-infrared
spectroscopy (NIRS) is one methodology that may have these
characteristics.

4 Near-Infrared Spectroscopy
NIRS has been increasingly used in human brain monitoring
studies in adults since it was first described by Jobsis41 as an
optical method for noninvasively assessing cerebral oxygenation
changes. In the 1980s, Delpy et al.42–47 designed and tested an
NIRS system for a clinical application with newborn infants.
Further efforts improved the methodology and hardware and
thus expedited the translation of NIRS-based techniques into
a useful tool for brain function monitoring.47–53

Typically, an optical apparatus for NIRS consists of at least
one light source that shines light to the head and a light detector
that receives light after it has interacted with the tissue. Photons
that enter tissue undergo two different types of interaction:
absorption and scattering. Most biological tissue is relatively
transparent to light in the near-infrared range between 700
and 900 nm. This is largely because water, a major component
of most tissues, absorbs very little energy at these wavelengths.
Moreover, the hemoglobin molecule is the dominant chromo-
phore (light-absorbing molecule) in this range of the spectrum.
This spectral band is often referred to as the “optical window”
for the noninvasive assessment of brain activation (See Fig. 1).
Various types of brain activities, such as motor and cognitive

Fig. 1 Absorption of light by oxygenated and deoxygenated hemoglo-
bin (blue and red lines) and common NIRS light source wavelengths
(730 and 850 nm) as well as Infrascanner wavelength (805 nm)
marked.
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activities, have been studied using this technique by making
continuous measurement while subjects are engaged in an
experimental protocol.52–55

5 Method

5.1 Measurement

The principle used by Infrascanner to identify intracranial
hematomas is that extravascular blood absorbs NIR light
more than intravascular blood. This is because there is a greater
concentration of hemoglobin in an acute hematoma than in
normal brain tissue where blood is contained within vessels.
Infrascanner compares the left and right side of the brain in
four different areas. The absorbance of NIR light is greater
(and therefore less light is detected) on the side of the brain con-
taining a hematoma than on the uninjured side. Optical light
source(s) or emitter(s) and a photodetector are placed at

a distance, which allows proper NIRS absorption measurements
in a desired volume of tissue. The wavelength of 805 nm is
sensitive only to blood volume, not to oxygen saturation in
the blood, as shown in the figure below.

A full head scan with Infrascanner involves measuring from
eight head locations, two on each side of the head on frontal (F),
parietal (P), temporal (T), and occipital (O) regions (Fig. 2).
The difference in optical density (ΔOD) for different brain
areas in F, P, T, and O regions is calculated using the following
equation:

EQ-TARGET;temp:intralink-;sec5.1;326;642ΔOD ¼ log10

�
IN
IH

�
¼ log10ðINÞ − log10ðIHÞ;

where IN is the intensity of reflected light on the normal side and
IH is the intensity of reflected light on the hematoma side.

Fig. 2 Head location of Infrascanner measurements.

Fig. 3 Infrascanner 2000 handheld battery-operated sensor, front and back (a) disposable cap with light
guides for NIR laser and detector positioned over scalp (b) an optional docking station (c) for data backup
and/or battery recharge.
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5.2 System Design

The Infrascanner system incorporates an 805-nm laser diode
located 4 cm away from a silicon light detector, which is covered
by an NIR optical filter and a disposable cap that contains fiber
optic light guides (Fig. 3). Using this setup and the automated
calibration algorithm, a full head scan can be acquired in
<2 min.

The laser delivers NIR light to the tissue under the sensor via
an optical fiber and the detector receives the signal via a separate
optical fiber after the light has interacted with the tissue.
The 4-cm separation between the light source and the detector
allows measurement of NIR absorbance in a volume of tissue
∼2-cm wide by 2- to 3-cm deep.

The detector signal is then digitized and processed at the
computational unit (embedded computer) for quality control
and additional measurements. The computational unit sets the
hardware parameters for all measurements (laser power, gain,
number of pulses, etc.) (Fig. 4).

The measurement and control software that runs on the
embedded computer was developed using Embedded Visual
C++ and is compatible with any Microsoft Windows Mobile.

In measurement mode, the embedded computer receives the
data from the sensor hardware and adjusts the sensor settings
automatically until acceptable data quality is received within
a predefined timeout period. Each received measurement
set contains a series of multiple short scans to test reliability.
An acceptable raw signal should be within low and high
limits as either extremes indicate problematic measurement.
Moreover, signal-to-noise ratio is calculated using mean and
standard deviation of the current set and should be higher
than a predefined stability threshold to guarantee proper
measurement. Through an iterative algorithm (see Fig. 5), the
embedded computer checks and corrects for detector saturationFig. 4 Infrascanner hardware block diagram.

Fig. 5 Block diagram depicting single iteration of measurement control algorithm.
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(too high gain and light intensity), signal-to-noise ratio, and
stability of measurements.

The data are further processed for the calculation of optical
density, and the results are displayed on the screen to the oper-
ator. User interface also includes an auditory feedback to ensure
the focus of the operator on the patient. Embedded computer
assigns each measurement session a unique ID number and
measurement date for later look-up. Figure 6 summarizes the
measurement process and user interface that visualizes the
data with a simulated head trauma generated by placing an opti-
cal attenuator between laser and detector light guides.

6 Results
In a pilot study,10 an NIRS examination was obtained in the ER
at the time of the admission CT scan. Using an early prototype
of the Infrascanner, called the “Runman,” serial measurements
of ΔOD were obtained in 305 head-injured patients. The maxi-
mal ΔOD among the various regions examined was recorded for
each patient and was compared with the admission CT scan.
ΔOD on admission to the hospital was significantly elevated
(>0.05) in all but 4 (2%) patients with intracranial hematomas.
ΔOD was normal (0.00 to 0.05) in patients with diffuse brain
injury (DBI). A single NIRS examination, therefore, reliably
identified patients with an intracranial hematoma (98% had a
ΔOD > 0.05) and gave a suggestion of whether the hematoma
was intracerebral (most had a ΔOD < 0.6) or extracerebral
(most had a ΔOD > 0.6).

The pivotal double-blinded clinical study19 for FDA clear-
ance was carried out in five different clinical sites, four of
which are in the U.S.: (1) Baylor College of Medicine,
(2) Hahnemann Hospital, (3) The Hospital of the University
of Pennsylvania, and (4) University of Cincinnati. The fifth
site was the Lokmanya Tilak Memorial General Hospital located
in India. Clinical personnel in these five sites collected data
using the Infrascanner and computer tomography (CT) scans
(the gold standard in detecting hematomas). All the CT scans
were examined by an independent expert radiologist at

John’s Hopkins University Hospital. The evaluation of
Infrascanner measurements in comparison to CT scans is
based on a total of 431 patient data, where 122 of them were
hematoma cases of various sizes, depths, and locations.
Study results address the hematomas that clinicians may expect
the Infrascanner to detect in the clinical practice setting.
Consistent with preclinical testing, the Infrascanner demon-
strated high sensitivity (88%) in detecting hematomas >3.5
cc in volume and <2.5 cm from the surface of the brain.
Specificity in the per protocol population was 91%. The balance
between specificity and sensitivity supports the utility of the
Infrascanner to prioritize patients with suspected hematomas
for CT scan. It should be noted that the device is indicated
for use as a screening tool and as an adjunct to the standard diag-
nostic workup and will not be used in lieu of this workup.

An adult population study20 in Seville, Spain, evaluated
a total of 35 TBI patients, aged 17 to 76 years. There were
19 intracranial hematomas, confirmed by a CT scan completed
on all subjects within 40 min of the Infrascanner test. The sen-
sitivity in this population was 89.5% and specificity was 81.3%.

A study in Pittsburgh18 evaluated 28 patients of 0 to 14 years
in pediatric ICU who underwent CT as part of the clinical care
not necessarily triggered by trauma. There were 12 intracranial
hematomas confirmed by a CT scan completed on all subjects
within 24 h of the Infrascanner test. The sensitivity in this test
was 100%, and specificity was 81.3%.

A study in Padua and Treviso, Italy,17 evaluated 110 children
at intermediate or high risk for intracranial injury according to
the PECARN rules (GCS 14 and 15). There was only one brain
hematoma case in this group (it was successfully detected).
The specificity in this test was 93%, and the negative predictive
value (NPV) was 100%. The use of Infrascanner would have
reduced the number of CT scans by 10 (58.8% reduction).

A study in Lublin, Poland,22 evaluated 155 children with
mild TBI (GCS 14 and 15). The study aimed to propose a pro-
tocol of screening patients using Infrascanner as a complement
to repeated neurological examination and medical history

Fig. 6 Representative screens with typical and simulated head trauma in the left parietal lobe. (a) Home
screen, (b) preparation screen at the beginning of a session, (c) typical measurements completed at
frontal lobe at two locations, and (d) measurements completed at parietal lobe with simulated head
trauma.
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review. The results of this study led to the adoption of the
Infrascanner as part of the standard of pediatric care in Poland.16

A study in Moscow, Russia,14 evaluated Infrascanner ability
to detect ICH among 95 children having experienced mild trau-
matic head trauma. About forty-two children with associated
medium-high risk (GCS 13 and 14) received an evaluation
by neurosurgeon, Infrascanner, and CT. About fifty-three chil-
dren with associated low risk (GCS 15) received a scan with the
Infrascanner and were clinically monitored for 72 h. The sensi-
tivity was 100%, and the specificity was 92%.

A study in Beijing, China,12 evaluated a total of 85 TBI
patients, aged 8 to 89 years. There were 45 intracranial hema-
tomas confirmed by a CT scan completed on all subjects within
30 min of the Infrascanner test. The sensitivity in this population
was 95.6%, and specificity was 92.5%.

A study in a physician-staffed Helicopter Emergency
Medical Service in Nijmegen, Netherlands, evaluated a total
of 25 TBI patients.13 There were 15 intracranial hematomas con-
firmed by a CT scan completed on all subjects upon arrival to
a trauma center. The sensitivity in this population was 93.3%,
and specificity was 78.6%.

Tables 1 and 2 below outline all the studies with details and
results including sensitivity, specificity, positive predictive value
(PPV), and NPV.

A forest plot of the studies listed in Tables 1 and 2 is included
in Fig. 7. The combined odds ratio of adult and pediatric datasets
was found to be 3.79 (95% confidence interval, 3.16 to 4.56),
which indicated strong effect size of the NIRS measurements,
X2ð13; N ¼ 1293Þ ¼ 359.42, p ¼ 0.00.

Several limitations for identifying intracranial hematomas
with NIRS were also observed in the clinical studies. For exam-
ple, the size, type, and location of the hematoma cannot be as
precisely determined as with a CT scan. Additionally, because
the NIRS examination relies on absorbance in the contralateral
brain locations for comparison, bilateral lesions could be diffi-
cult to identify with this technology. An important confounding
factor for NIRS technology with TBI patients is injury to the
scalp. Blood contained within a scalp hematoma can also
alter the OD and cause a false-positive result with this technol-
ogy. These limitations could be addressed in future design and
development of NIRS-based hematoma detection systems.

7 Conclusions
Infrascanner is a clinically effective screening solution for head
trauma patients in prehospital settings, where timely triage is

critical. It is intended to be used as an adjunct to the standard
diagnostic workup to aid in the decision of choosing evacuation
destination (a trauma center or the nearest hospital) and in pri-
oritizing patients with suspected hematomas for urgent CT scans
and surgical interventions.

Disclosures
InfraScan Inc. is the manufacturer of the Infrascanner systems.
All authors own shares at the company due to their contributions
to the development of the systems.
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