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ABSTRACT
A brain-computer interface that measures the mental workload level of operators has applications 
in human-computer interactions (HCI) for reducing human error and improving work efficiency. 
In this study, concurrently recorded electroencephalography (EEG) and functional near-infrared 
spectroscopy (fNIRS) were combined at the decision fusion stage for the classification of three mental 
workload levels induced by an n-back working-memory task. An average three-class classification 
accuracy of 42, 43, and 49% has been achieved across 13 participants for the fNIR-alone, EEG-alone, 
and EEG-fNIRS combined approach, respectively. The current study demonstrated a multimodality-
based approach to decode human mental workload levels that may potentially be used for adaptive 
HCI applications.

1. Introduction

The human brain has a limited capacity to maintain 
and process imminent information in working memory 
[1]. Persistently high workload experienced by human 
operators such as aircraft pilots and automobile drivers 
can be the basis of life-threatening accidents resulting 
from decreased human performance [2,3]. Conversely, 
extremely low workload levels may cause boredom and 
low vigilance which can, in turn, decrease human perfor-
mance and lead to fatal errors [4]. A reliable assessment 
technique to monitor human mental workload in real 
time is needed for improving performance and reducing 
human error [3,5–7].

There are four indicator types for mental workload 
assessment: (1) task performance indicators such as time 
spent, accuracy, and error rate; (2) subjective rating scales 
such as NASA-TLX [8] for self-assessment; (3) physiolog-
ical signals such as functional near-infrared spectroscopy 
(fNIRS), electroencephalography (EEG), electrooculogra-
phy (EOG), and electrocardiogram (ECG); and (4) hybrid 
approaches using two or more of the aforementioned indi-
cators together [9,10]. With respect to real-time appli-
cation, neurophysiological indicators are the preferred 

choice because of their non-intrusive nature to the task 
and the continuous availability of the signals. Above all, as 
neurophysiological indicators are measurements of brain 
activity, they are also more objective and can potentially 
reveal direct and finer details of a user’s mental state 
compared to the systemic physiological measures, per-
formance indicators, and subjective rating scales [11]. 
There is a substantial body of evidence on the real-time 
evaluation of a user’s mental states using neurophysiolog-
ical signals [12–14]. The phenomenon has recently been 
referred to as passive brain-computer interfaces [15,16]. 
Although there are many neuroimaging techniques avail-
able for acquiring signals from the human brain, EEG 
and fNIRS are the most suitable for real-life application 
because of the lower cost and portability of these devices.

1.1. EEG-based workload assessment

EEG, despite the issues regarding artifacts, is the most 
studied and a very popular physiological measurement 
for mental workload assessment [17]. As early as 1998, 
Gevins, Smith and colleagues investigated EEG-based 
n-back classification using spectral features with high (up 
to 95%) accuracy reported for classifying two workload 
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classification accuracy of 75.6% was achieved across 10 
subjects. Naseer and Hong (2015) further investigated 
fNIRS-based classification of four tasks: right-hand motor 
imagery, left-hand motor imagery, mental arithmetic, and 
mental counting [23], which resulted in an average clas-
sification accuracy of 73.3%.

1.3. The concurrent EEG-fNIRS approach

In this study, we investigated workload classification with 
concurrent EEG and fNIRS. Our motivation is that EEG 
and fNIRS are highly complementary technologies each 
having its own advantages and disadvantages. EEG, for 
example, is precise in the time domain but lacks spatial 
specificity due to the volume conductive effect. fNIRS, 
on the other hand, is spatially specific yet lacks the time 
precision due to the delay in the hemodynamic response. 
EOG contamination is still a concern for EEG especially 
in the prefrontal areas despite substantial efforts to either 
detect or reduce the effect [24–26]. In contrast, fNIRS is 
not affected by eye activities and is particularly suitable 
for recording in the usually hair-free prefrontal sites. 
These qualities further highlight the compatibility for 
integration.

Concurrent EEG and fNIRS has been previously inves-
tigated and shows potential for brain-computer interfac-
ing (BCI) [27–35]. Pfurtscheller et al. (2010) described 
a hybrid BCI that used fNIRS as a brain switch to turn 
on/off a steady-state visual evoked potentials (SSVEP) 
BCI [24], while Leamy found that using simultaneous 
EEG-fNIRS was able to better differentiate two mental 
states of the subjects: motor imagery and rest [28]. Fazli 
and colleagues investigated enhancing the performance 
of EEG-based real-time motor imagery BCI with fNIRS 
using two approaches. In the first approach, they directly 
used the fNIRS features in classification [30], while the 
second approach, fNIRS was used to predict the per-
formance of an EEG-based BCI that informs a meta- 
classifier [29]. Both approaches improved the BCI accuracy 
by around 3–5% from a baseline of about 78% achieved by 
an EEG-only approach. Morioka and colleagues reported 
the enhancement of an EEG-based decoder in a spatial 
attention task using fNIRS prior to solving the cortical 
current estimation problem [31]. They found that using 
EEG cortical sources estimated with prior fNIRS sources 
significantly improved decoding accuracy (~79%) com-
pared to the traditional EEG-only approach (~71%). Khan 
et al. in 2014 proposed a four-command BCI that used 
fNIRS to decode mental-counting/arithmetic and used 
EEG to decode left/right hand tapping [34], while Tomita 
et al. in 2014 showed that an improved classification can 
be achieved by adding fNIRS to detect the on and off state 
for an SSVEP-based BCI [33]. Blokland et al. investigated 

levels across eight subjects [12]. Furthermore, the classi-
fications were found to be stable across days, participants, 
and two different tasks (verbal/spatial n-back). However, 
the data were recorded in three sessions of 6–8 hours 
time span with two-thirds of the data randomly chosen 
for training the classifier. In addition, the EEG data were 
visually inspected for artifact rejection before classifica-
tion. All of these methodological assessments could be 
prohibitive for practical use. Grimes, Tan, and colleagues 
investigated the effect of several factors that might affect 
the classification accuracy for the n-back task [14]. These 
factors include the time window size of a trial, the amount 
of available training data, and the number of EEG chan-
nels. Although all of these factors were found to affect clas-
sification accuracy, the time window size was particularly 
sensitive. Using a combination of spectral and phase-co-
herence features, they achieved classification accuracy 
comparable to Gevins et al. using as few as 20 min worth 
of training data and a 30 s time window size. Brouwer 
and colleagues investigated n-back classification across 
35 subjects using event-related potential (ERP) features 
in addition to the traditionally adopted spectral features 
which resulted in improved classification accuracy [18]. 
Muhl et al. found that EEG-based n-back classification can 
be performed across two affective contexts – relaxed and 
stressed – without much performance loss [19].

1.2. fNIRS-based workload assessment

Recently, fNIRS-based mental workload assessment has 
gained attention among researchers. fNIRS is an optical 
brain imaging technology for monitoring the concen-
tration changes of oxygenated hemoglobin (ΔHbO) and 
deoxygenated hemoglobin (ΔHbR) in the cortex. It is easy 
to set up and particularly suitable for monitoring pre-
frontal activation due to its resistance to eye-movement 
artifacts and it is a cost-effective device for measuring cor-
tical activation from the hairless forehead areas. fNIRS 
has been used to investigate cognitive activation patterns 
under different task load conditions. For example, Ayaz et 
al. compared the average fNIRS activation under different 
workload levels for n-back tasks [10,20], air traffic control 
tasks [21], and UAV piloting tasks [11]. Significant fNIRS 
activation was found across the different workload levels. 
The potential of fNIRS for workload level classification is 
important and the results could establish a framework to 
enable future real-time applications. Herff et al. (2014) 
investigated single-trial n-back classification using only 
prefrontal fNIRS [13] and ~78% accuracy was achieved 
for discriminating between 1-back and 3-back conditions. 
Hong et al. in 2015 investigated fNIRS-based classifica-
tion of three tasks: mental arithmetic, left-hand motor 
imagery, and right-hand motor imagery [22]. An average 
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differentiating motor execution, attempted execution, and 
motor imagery from rest for healthy subjects and tetraple-
gia patients [32]. They demonstrated that adding fNIRS 
improved classification accuracy approximately 6% for 
attempted movement and 7% for imagined movement. 
Yin et al. in 2015 extracted EEG time-phase-frequency 
features and combined them with fNIRS for the classifi-
cation of a motor imagery task. Adopting a joint mutual 
information criterion for feature selection and an extreme 
learning machine for classification, a 1–5% improvement 
in decoding accuracy was found with the inclusion of 
fNIRS [35].

In the area of mental workload classification, the 
potency of EEG-fNIRS is yet to be shown. To our knowl-
edge, there are three preliminary studies thus far address-
ing EEG-fNIRS mental workload classification. Hirshfield 
et al. investigated the classification of mental workload 
levels induced by a plane counting task and reported a 
binary classification accuracy of 53–55% (EEG) and 
70–72% (fNIRS) [36]. Coffey et al. investigated the clas-
sification of n-back induced workload levels and reported 
a 2- vs. 0-back accuracy of 73% (EEG), 61% (fNIRS), and 
61% (EEG+fNIRS) [37]. The authors of the two studies 
suggested a number of factors that might have affected 
accuracies, including but not limited to sensor layout/
placement, signal processing, and the task adopted to elicit 
workload changes. Herff and colleagues recently reported 
the preliminary results of memory load level classification 
with concurrent EEG-fNIRS and showed that feature-level 
fusion of the two modalities increased the robustness of 
classification using the data recorded from 3 EEG chan-
nels, 4 EOG channels, 28 fNIRS sources, and 15 fNIRS 
detectors [38].

The main objective of this study is to investigate the 
fusion of EEG and fNIRS to discriminate mental work-
load levels. We adopted the n-back working memory 
task, which has been used by numerous working memory 
classification studies [12–14,18,19,36,37] to induce three 
controlled workload levels: 0-back, 1-back, and 2-back. A 
novel approach was employed to combine EEG and fNIRS 
at the decision fusion stage by taking into consideration 
the different temporal resolutions of the two modalities. 

The classification performance of the proposed approach 
was compared to those achieved by each single modality 
alone.

2. Materials and methods

2.1. Participants

Sixteen volunteers (six female) aged between 18 and 30 
(mean = 22, standard deviation [SD] = 3) from Drexel 
University participated in the study. The Edinburgh 
Handedness Inventory showed that participants were 
all right-handed and the average Laterality Quotient 
(L.Q.) and Decile were 80 (SD = 18) and 6.4 (SD = 3.1), 
respectively. Participants self-reported that they had 
their vision corrected to 20/20, did not have any his-
tory of neurological or psychiatric disorders, and did 
not take any medication known to affect brain activ-
ity. Participants further self-reported to be naïve to the 
n-back paradigm. One participant was rejected from the 
study due to missing fNIRS data. Two more participants 
were excluded from the study due to excessive motion 
artifact in the fNIRS and EEG measures. As a result, 
the data from a total of 13 participants were used in 
the analyses. Prior to the experiment, participants gave 
written informed consent for their participation in the 
study. The protocol was approved by the Institutional 
Review Board of Drexel University (IRB protocol: 
1409003112).

2.2. Experiment paradigm

A visual verbal n-back task was adopted to manipulate 
mental workload level. Subjects sat comfortably in front 
of an LED screen. Sequences of capitalized letter stimuli 
(~1.7°° visual angle) were shown at the center of the screen. 
We employed the BCI2000 software for stimulus delivery 
and for the recording of EEG and behavioral data [39]. 
Each letter was displayed for a duration of 480 ms and the 
inter-stimulus interval (ISI) was 2000 ms. Subjects were 
instructed to identify target letters and press the ‘enter’ 
key on a number keypad with their right index finger as 
fast as possible. There were three workload conditions. In 

Figure 1. time line of an n-back block.
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were instructed to focus their eye gaze on a white plus sign 
located at the center of the screen: this fixation allowed 
the fNIRS signals to return to the baseline. Figure 1  
shows the time line of an n-back block.

There were four recording sessions. Each session 
included 12 n-back blocks, 4 from each condition. Hence, 
there were 48 n-back blocks for the entire experiment, 16 
from each condition. To reduce the relationship between 
adjacent samples and to balance time induced experi-
mental factors such as fatigue across the three workload 
conditions, the 48 n-back blocks were grouped into 16 
repetitions. Each repetition included one block from each 
workload condition. The order of the blocks was further 
randomly shuffled so that no workload condition was 
repeated twice in succession within a session. Before the 
start of the first session, subjects practiced one block from 
each condition for familiarization with the procedure. 
Subjects took a break between the recording sessions for 
as long as requested. The entire recording time was about 
one hour. Figure 2 shows the outline of the experiment.

2.3. Data acquisition

EEG and fNIRS were simultaneously recorded from the 
subjects. Figure 3 illustrates the recording setup.

EEG was recorded using a Neuroscan Nuamp amplifier 
from 28 locations according to the International 10–20 
system. Two additional electrodes, one placed below the 
left eye and the other placed at the right outer canthus, 
were used to record electrooculography (EOG) activities. 
All channels were grounded at the left mastoid, referenced 
to the right mastoid, digitally sampled at 500 Hz and low-
pass filtered at 100 Hz for analysis.

Prefrontal fNIRS was recorded using a 16-channel 
continuous-wave fNIRS system developed at Drexel 
University [40,41] and manufactured by fNIRS Device 
LLC. The sensor included four light sources (LED) that 
can emit 730 nm and 850 nm wavelengths light and 10 
photo detectors (see Figure 4). The distance between 
light sources and detectors is 2.5  cm, which allowed 
for a ~1.2  cm penetration depth. Data were sampled 
at 2  Hz and recorded using the Cognitive Optical 

the 0-back condition, the letter ‘X’ was the target. In the 
1-back condition, the current letter was the target if it was 
shown on the previous screen as well. In the 2-back con-
dition, a letter was the target if it was shown two screens 
back. To successfully complete the 2-back task, the per-
former needed to keep updating a memory load of two 
letters, the letter on the previous screen and the letter two 
screens back.

The letter stimuli were grouped into n-back blocks. Each 
block included 7 s of instructions, 40 s of task execution, 
and 17 s of fixation. The instruction period informed the 
subject which task (0-, 1-, or 2-back) to perform. During 
the task period, 16 letters were shown to the participants 
on the screen in a pseudo-random order. Five of the let-
ters were targets. No letters appeared more than twice in 
succession within a block. In the fixation period, subjects 

Figure 2. experiment outline.

Figure 3. recording setup.

Figure 4. fnirs sensor layout.
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physiological signals such as heartbeat and respiration and 
converted into concentration changes in oxy-hemoglobin 
(Δoxy-Hb) and deoxy-hemoglobin (Δdeoxy-Hb) using 
the modified Beer-Lambert law [46]. The Δoxy-Hb and 
Δdeoxy-Hb epochs of each n-back block were extracted 
from the onset of the first stimulus to 2.5 s after the onset 
of the last (the 16th) stimulus – a 40 s time window. The 
average activation difference between the first 5 s and the 
last 35 s of a block was calculated as a feature. The average 
activation amplitude with respect to a baseline has been 
adopted as the feature for characterizing the mental activ-
ities in many studies [20,40,47–49]. To further decrease 
feature size to reduce overfitting, fNIRS features in the fol-
lowing three areas were averaged (see Figure 4 for sensor 
layout): left lateral (optode 1–4), medial (optode 5–12), 
and right lateral (optode 13–16). fNIRS data included 3 
[areas] × 2 (Δdeoxy-Hb / Δoxy-Hb) = 6 features and 3 
[workload levels] × 15 [blocks] = 45 samples. Alternative 
feature options such as slope, peak, and range were 
explored but preliminary results suggested they are prone 
to outliers and do not outperform the most commonly 
adopted average amplitude.

2.5. Classification

We considered the binary classification problem of 2- vs. 
0-back, 2- vs. 1-back, and 1- vs. 0-back and the three-class 
classification problem of 2- vs. 1- vs. 0-back. The following 
three approaches were compared:

•  EEG-alone. A linear discriminant analysis (LDA) 
was trained to classify EEG features at a single trial 
level (2.5 s time windows with respect to a single 
stimulus). The LDA outputs from the 16 stimuli of 
a block were averaged to produce the EEG score, 
which determines the predicted workload levels.

•  fNIRS-alone. An LDA was trained to classify fNIRS 
features at block level (40 s time windows, included 
16 stimuli). The LDA output is termed the fNIRS 
score.

•  EEG-fNIRS. A meta-LDA was trained to optimally 
combine the EEG score and the fNIRS score for 
EEG-fNIRS classification (see Figure 5).

For the EEG-based classification, an alternative 
method is averaging the band-powers within each block 
before LDA classification. However, there are only 15 
sample blocks per condition with 85 features. Although 
alternative classifiers such as regularized-LDA and sup-
port vector machines can handle this situation, overfit-
ting may become an issue. By training the LDA at the 
single stimulus level, the high temporal resolution of 
EEG is utilized and the sample size is increased to 240 
per condition.

Brain Imaging (COBI) studio software [42]. To ensure 
repeatable sensor placement, the center of the sensor 
was aligned to the midline of the superior forehead and 
the bottom of the sensor was touching the participant’s 
eye brow.

The EEG and fNIRS signals were synchronized using 
stimulus triggers that were sent from the stimulus pres-
entation software BCI2000 [39] to the EEG and fNIRS 
data-acquisition devices during recording.

2.4. Signal processing and feature extraction

EEG. The raw EEG were high-pass filtered at 1  Hz to 
remove drift and notch-filtered at 58–62 Hz to suppress 
line noise using a finite impulse response (FIR) filter 
before subsequent analyses. The following 17 channels 
were used (according to the 10–20 system): Cz, Fz, Pz, 
F3, F4, P3, P4, O1, O2, F7, F8, T7, T8, C3, C4, P7, and P8. 
The EEG epochs were extracted from −500 ms to 2000 ms 
with respect to the onset of each single stimulus. Power 
spectral density (PSD) has been widely adopted for men-
tal workload characterization [12,14,18,43,44]. The PSD 
of each epoch was estimated by adopting a periodogram 
with a Hann window. The log band power of δ (1–4 Hz), θ 
(4–8 Hz), α (8–13 Hz), β1 (13–20 Hz), and β2 (20–30 Hz) 
bands were used as features. EEG data included 17 [chan-
nels] × 5 [bands] = 85 features and 3 [workload levels] × 
15 [blocks] × 16 [stimuli] = 720 samples.

fNIRS. Raw light intensities were first visually 
inspected to reject those optodes with inadequate con-
tact or those positioned over the hairline. The Sliding-
window Motion Artifact Rejection (SMAR) algorithm 
was adopted to reject motion-artifact-contaminated signal 
segments [45]. Raw light intensities were low-pass filtered 
at 0.08 Hz using the FIR filter for removing artifacts from 

Figure 5. eeG-fnirs workload classification. an LDa was trained 
to classify eeG band power features at single-stimulus level (2.5 
s epoch). the output scores from the 16 stimuli (of a block) were 
averaged to produce the eeG score. another LDa was trained to 
classify fnirs features extracted from each block (40 s epoch) 
to produce the fnirs score. a meta-LDa was then trained to 
optimally combine the eeG score and the fnirs score for eeG-
fnirs classification. all of the above procedures were conducted 
on training data. all three LDa classifiers were then applied on 
testing data to evaluate the classification performance.
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and 2-back (FDR q < .01) and between 1-back and 2-back 
conditions (FDR q < .001).

For TIC, the mean and SD were 98.0 ± 2.5%, 97.2 ± 2.9%, 
and 94.0 ± 5.8% for 0-back, 1-back, and 2-back conditions, 
respectively. ANOVA revealed a significant effect of men-
tal workload (F(2,24) = 3.9, p < .05). Post-hoc tests found 
only a significant difference between 0-back and 2-back 
conditions (FDR q < .05).

3.2. Reliability of EEG features

To show the spatial and spectral reliability of EEG features, 
LDA accuracies for discriminating 0-back and 2-back 
blocks were estimated by adopting subsets of EEG features 
and the results are shown in Figures 6 and 7. As expected, 
EEG power spectral density (PSD) features were most reli-
able in the alpha band over parietal areas (P3, Pz, and P4).

3.3. Reliability of fNIRS features

To show the reliability of fNIRS features, LDA accuracies 
for discriminating 0-back and 2-back blocks were esti-
mated by adopting subsets of fNIRS features as shown 
in Figure 8. Overall, Δoxy-Hb provided better results 

2.6. Performance evaluation

Leave-one-out cross-validation (LOOCV) was adopted 
to evaluate classification performance. In LOOCV, all but 
samples from one block were used to train the three LDAs 
aforementioned. The LDAs were then applied on the block 
that was left out to evaluate classification performance. 
This procedure was repeated until all n-back blocks were 
left out exactly once.

A one-sided Wilcoxon signed-rank test was adopted 
to evaluate whether the median accuracies from the 13 
participants were significantly better than 55.4% and 
37.8%, the chance level, for the binary and three-class 
classification problems, respectively. The chance level is 
determined by the upper bound of the 95% confidence 
interval assuming the random-guess classification results 
follow a binomial/multinomial distribution [50].

2.7. Multiple comparisons

To correct for multiple testing, we adopted false discovery 
rate (FDR) control with the Benjamini-Hochberg proce-
dure [51]. Without specification, we rejected null hypoth-
eses for FDR q < .05.

3. Results

3.1. Key-press behavior

We evaluated the effect of mental workload on the key-
press response time (RT) and target identification accu-
racy (TIC) with a repeated-measures one-way analysis of 
variance (ANOVA). The RT and TIC measures were nor-
malized across the three workload conditions subject-wise 
before statistical tests.

For RT, the mean and SD were 450 ± 54 ms, 450 ± 88 ms, 
and 549 ± 145 ms for 0-back, 1-back, and 2-back condi-
tions, respectively. A significant effect of mental workload 
level was found (F(2,24) = 24.7, p < .001). Post-hoc tests 
revealed a significant difference in RT between 0-back 

Figure 6. the number of participants (indicated by gray level) with better than chance-level (i.e. >55.4%) LDa accuracy.

Figure 7. average and standard deviation of LDa accuracy across 
13 participants.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

ri
zo

na
] 

at
 0

8:
44

 0
3 

O
ct

ob
er

 2
01

7 



BRAIN-COMPUTER INTERFACES   181

3.4. Mental workload classification

Table 1 summarizes the average classification results 
achieved by the three approaches (EEG-alone; fNIRS-
alone; EEG-fNIRS). For 1- vs. 0-back, none of the 
approaches achieved meaningful classification. Together 
with the behavioral performance, we found no obvious 
workload difference between 0-back and 1-back condi-
tions. For 2- vs. 0-back, all three approaches achieved 
accuracies significantly better than 55.4% (the binary 
chance level). For 2- vs. 1-back, EEG-alone and the EEG-
fNIRS performed significantly better than chance. Only 
EEG-fNIRS achieved accuracies significantly better than 
37.8% (three-class chance level) for the 2 vs. 1 vs. 0 case.

The performances achieved by individual subjects using 
the three approaches are compared in Figure 10. EEG-
fNIRS outperformed EEG-alone for the 1- vs. 0-back, 2- vs. 
0-back, and 2- vs. 1 vs. 0-back (FDR q < .05). By including 
fNIRS, an equal or better accuracy was achieved for 12 out 
of 13 participants for 2- vs. 1-back and 2- vs. 1- vs. 0-back, 
whereas all 13 participants achieved better 2- vs. 0-back 
accuracy. EEG-fNIRS outperformed fNIRS-alone only for 
the 2- vs. 0-back case (FDR q < .05). Finally, compared 
to the fNIRS-alone approach, EEG-alone achieved better 
2- vs. 0-back performance (FDR q < .05).

4. Discussion

Hemodynamic response signals may provide additional 
information to the commonly adopted electroencepha-
lograph for the discrimination of cognitive tasks. In the 
current study, simultaneously recorded EEG-fNIRS was 
adopted for the classification of mental workload levels. 
The behavioral results suggested a higher mental workload 
level was experienced by subjects in the 2-back compared 
to 0-back and 1-back conditions. For fNIRS-alone classifi-
cation, we achieved 65.6, 59.5, and 41.7% average accuracy 
for 2- vs. 0-back, 2- vs. 1-back, and 2- vs. 1- vs. 0-back, 
respectively. For EEG-alone classification, 79.2, 71.0, and 
42.7% average accuracies were achieved respectively for 
the 2- vs. 0-back, 2- vs. 1-back, and 2- vs. 1- vs. 0-back 
tasks.

We next showed that classification performance can be 
improved by combining fNIRS and EEG. The 2- vs. 1- vs. 
0-back three-class classification accuracy was increased by 
an average of 6% and 7% respectively compared to using 
only EEG or only fNIRS. By integrating EEG and fNIRS, 
the workload classification was significantly higher than 
37.8%, the upper bound of the 95% confidence interval 
of chance-level accuracy. Previously, EEG-fNIRS has 
improved classification over the EEG-alone approach for 
motor imagery tasks [29,30,32], spatial attention tasks 
[31], and the on/off state of SSVEP-based BCIs. Our study 

compared to Δdeoxy-Hb though no significant differences 
were found (Wilcoxon signed-rank test, FDR-adjusted).

We evaluated the temporal reliability of fNIRS features 
by estimating LDA accuracies using the averaged fNIRS 
activation within a 5 s moving time window as a feature, 
depicted in Figure 9. It can be seen that average accuracy 
increases with elapsed time from the block start to its sta-
bilization at approximately 22 s. This can be explained by 
the time needed for the participants to start experiencing 
workload and the delay of the hemodynamic response.

Figure 8. average and standard deviation of LDa accuracy across 
13 participants. L, left lateral pfC area; m,– medial pfC area; r, 
right lateral pfC area; all, all areas included.

Figure 9.  LDa accuracy using fnirs adopting a moving time 
window of 5 s length. solid line and the shaded area show 
average and standard deviation across 13 participants. Horizontal 
axis shows mid-point of time window from block start.

Table 1.  Comparison of classification results. the results shown 
are mean ± standard deviation accuracy across 13 participants.

#significantly better than chance level (fDr q < .05).

Accuracy (%)

n-back comparison

1 vs. 0 2 vs. 0 2 vs. 1 2 vs. 1 vs. 0
eeG-alone 32.8±11.5 79.2±15.2# 71.0±18.6# 42.7±12.8
fnirs-alone 46.7±9.7 65.6±6.1# 59.5±15.4 41.7±7.9
eeG-fnirs 38.2±8.8 83.1±12.6# 72.6±18.1# 48.7±12.7#
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investigated for classification. Naseer et al. in 2016 com-
pared the fNIRS-based binary classification of mental 
arithmetic vs. rest using linear discriminant analysis, 
quadratic discriminant analysis, k-nearest neighbor, 
naïve Bayes, support vector machine, and artificial 
neural networks (ANN). They found that the ANN 
approach provided the best classification. Second, alter-
native features may be adopted to characterize men-
tal workload. In our study, we extracted the average 
activation changes and the band powers from fNIRS 
and EEG, respectively. Herff et al. adopted the slopes of 
straight lines fitted into a moving window as features for 
fNIRS characterization [13]. Grimes et al. adopted the 
phase-locking values between EEG channels as features 
[14]. The size of these features, however, is large. Hence 
more sample blocks per subject are needed in order to 
prevent overfitting.

The present study demonstrated the potential of the 
EEG-fNIRS multimodality approach for measuring 

suggested an improvement may also be obtained for a 
working-memory task.

EEG data are often contaminated by EOG artifacts, 
particularly at the frontal sites. To investigate whether 
reducing EOG contamination may help improve classifi-
cation, we employed an independent component analysis 
(ICA) based EOG reduction technique to spatially filter 
EEG data and repeated the classification analysis. EOG 
reduction resulted in a deterioration of classification per-
formance, which may be caused by a removal of some 
useful information along with the EOG components. 
This analysis, however, is preliminary. Future work may 
be conducted investigating alternative EOG-reduction 
techniques [25,52–54].

In this study, a three-class classification accuracy 
of 48.7% was achieved by integrating EEG and fNIRS. 
Various approaches may be adopted to further improve 
the workload classification accuracy. First of all, tech-
niques other than linear discriminant analysis may be 

Figure 10.  scatter plot comparing classification accuracies. top row: fnirs-alone (x-axis) and eeG-alone (y-axis); middle row: fnirs-
alone (x-axis) and eeG-fnirs (y-axis); bottom row: eeG-alone (x-axis) and eeG-fnirs (y-axis). each circle represents the results from 
one participant. the percentage at top left indicates the percent of subjects with equal or improved accuracy by adopting the better 
approach. the results from the Wilcoxon signed-rank test with H0:x = y and fDr correction are shown at the bottom of each sub-figure.
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5.  Conclusion

In summary, we sought to improve mental workload 
classification with simultaneously recorded EEG and 
fNIRS. By including fNIRS in addition to EEG, a signif-
icant improvement in classification accuracy was found 
despite the relatively low classification accuracy achieved 
using only fNIRS. The current study presents a promising 
application of the simultaneous EEG-fNIRS approach in 
enhancing the performance of a passive BCI.
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