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Abstract� A familiar construct in everyday life is the use of 

past performance to predict future performance of individuals 

such as human operators. Here, we propose that brain activity 

measured during cognitive task execution can be used for 

prediction of future performance of the same individual on the 

same task. We recorded multimodal wearable neuroimaging 

data (Functional Near Infrared Spectroscopy and 

Electroencephalogram) from twenty-three volunteers 

performing a cognitive task on three different days. We have 

analyzed the relationship of brain activity and behavior for both 

within and across sessions. Preliminary results across sessions 

show that, as expected, past performance is related to future 

performance during other sessions to an extent. However, brain 

activity captured during the task is a better predictor of the 

future performance compared to current performance. 

Moreover, within session results show that medial prefrontal 

cortex brain activity is correlated with imminent future 

performance as well. These are the first multimodal 

neuroimaging results suggesting that brain activity has macro 

(across days) and micro (across seconds) level links to 

performance.   

I. INTRODUCTION 

Our society relies on utilizing past performance track 
records in order to generate a model for prediction of future 
performance. Similar to the way in which standardized testing 
is used to predict college performance and resumes are used to 
anticipate job aptitude, the triage of operators is often based on 
task performance only. The efficiency and safety of complex 
high-precision human-machine systems such as in aerospace 
and robotic surgery are closely related to the cognitive 
readiness, ability to manage workload, and situational 
awareness of their operators [1]. As such, better estimation of 
future performance could significantly improve training as 
well as mission-critical operation of such complex systems.   

The rapid evolution of personal electronics in the last 
quarter century has seen remarkable innovation and adoption 
of wearable sensing technologies. Data that at one time could 
only be collected in laboratory environments has suddenly 
become accessible, affordable, and easily integrated into 
popular electronics and other smart devices. This 
technological development has moved quickly to meet a 
growing demand for health analytics, driven by individuals 
who want to learn more about themselves in order to improve. 
Currently, consumer usage of these devices is treated primarily 
as a novelty, but in the near future, continuous biomedical 
monitoring solutions may play important roles in healthcare as 
well as in the workplace. While modern activity trackers have 
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introduced physiological measurements such as heart rate to 
measure physical exertion or correlates of stress, these 
measures are fundamentally non-specific, thereby leaving a 
picture that is far from complete. In order to expand on the 
features currently available and elevate the role of continuous 
monitoring solutions at work and at home, the application of 
wearable sensors must be expanded to new areas, and nowhere 
is there more untapped potential than in the brain [2].  
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also distinctly more capable than simply tracking activities, 
potentially providing direct insight into user intentions, mental 
states, and more. Yet, despite the central role of the brain in 
day-to-day tasks and how we interact with the world around 
us, its capabilities and activities are often overlooked in both 
research and in practice. 

Neuroergonomics is an emerging field that investigates the 
human brain in relation to behavioral performance in natural 
environments and everyday settings [3]. Neuroergonomics 
was coined by Raja Parasuraman at the turn of this century [4-
6] and primarily focuses on understanding the brain in natural 
environments [7]. It was fueled by the emergence and 
widespread use of portable and wearable neuroimaging 
systems such as functional near infrared spectroscopy (fNIRS) 
and electroencephalography (EEG). fNIRS is a noninvasive 
brain monitoring technology that relies on optical techniques 
to detect changes of cortical hemodynamic responses to human 
perceptual, cognitive, and motor functioning [8]. EEG 
measures the cortical electrophysiological dynamics using 
electrodes over the scalp [9]. Both techniques matured and 
evolved into ultra-portable, battery-operated, and wireless 
hardware, enabling unrestricted measurements for studying 
natural brain dynamics [10-12]. 

The finite nature of human cognitive capacity demands an 
efficient relationship between invested mental effort and task 
performance. There has long been an implicit understanding 
that effortful cognition is reflected by changes in brain activity; 
however, it is only recently with the advent of modern sensing 
techniques that we have been able to study the relationship 
between mental workload and its physiological and 
neurological underpinnings [5, 13-15].  

Previous EEG and fNIRS-based research on cognitive 
workload primarily focused on time-locked physiological 
changes during task performance. Only a few studies have 
investigated the potential of neuroimaging-based predictors 
for cognitive performance estimation. Stikic et al. [16] 

������	�
���	������������
����������
������
	�����
���	���	����

�
��������
����!��	��� 

Hasan Ayaz, Senior Member, IEEE, Adrian Curtin, Student Member, IEEE, Jesse Mark, Amanda 

Kraft, and Matthias Ziegler  

2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
Bari, Italy. October 6-9, 2019

978-1-7281-4569-3/19/$31.00 ©2019 IEEE 3925

Authorized licensed use limited to: Drexel University. Downloaded on June 02,2021 at 14:31:39 UTC from IEEE Xplore.  Restrictions apply. 



  

investigated the capability of EEG to assess the impact of 
fatigue on both present and future cognitive performance using 
a sustained attention task. They concluded that EEG can be 
used to predict gross-performance degradations 5�15 min in 
advance. Campbell et al. [17] utilized EEG for prediction of 
future performance in a training context for name-object 
association learning. van der Hiele et al. [18] investigated EEG 
biomarkers of future cognitive performance in the elderly. 
They concluded that EEG and cognitive measures combined 
provided the best prediction of future cognitive performance. 
Trambaiolli et al. [19] found that EEG amplitude modulation 
signals during resting state were able to correlate with and 
predict an fNIRS affective neurofeedback task performance 
using an LDA model. Also, Ayaz et al. [20] used an n-back 
verbal working memory task to demonstrate that fNIRS-based 
biomarkers can provide better estimation of task performance 
across task conditions compared to task performance.  

In this study, we aimed to investigate the relation of brain 
activity to performance in a multi-day experiment with an 
inhibitory control task using multi-modal wearable 
neuroimaging modalities: EEG and fNIRS. We assessed the 
relation of overall brain activity across sessions (each task 
condition and iterations from one session to another ����������
performance), as well as within session (brain activity time 
series to continuous performance). We hypothesized that 
mental effort, as measured by brain activity, would provide 
more relevant correlates than task performance in predicting 
future performance.   

II. METHOD 

A. Participants  

Twenty-three volunteers between the ages of 18 to 48 (16 
female, mean age 23 ± 7 years) participated in the study. All 
subjects completed pre-session questionnaires stating that they 
met the eligibility requirements of being right-handed with 
vision correctable to 20/20, did not have a history of brain 
injury or psychological disorder, and were not on medication 
affecting brain activity. In addition, prior to the study all 
participants signed voluntary consent forms approved by the 
Institutional Review Board of Drexel University. 

B. Experimental procedure  

Participants completed three 60-90-minute task sessions 
over the course of one month, each spaced at least one week 
apart. Participants completed several different cognitive tasks 
using a standard mouse and keyboard on a desktop computer 
presented in pseudorandom balanced order; here we present 
analysis of the inhibitory control task (see Figure 1 and next 
section for task details).  

All tasks were implemented with PsychoPy [21] in 
repeated block format and lasted 5-8 minutes each. An 
instructional slide and short practice period were given before 
each task for the subjects to familiarize themselves with what 
to do and allow them to ask questions. 

C. Cognitive Task: Inhibitory Control 

A variant go-stop task [22] was implemented that 
incorporated three different types of trials: Go, Ignore, and 
Inhibit (Figure 1). Each block contained twenty stimuli (trials), 
each separated by a randomized 750-1250 ms. Every trial 
began with a stimulus presented as a plus sign contained within 

a circle. Subjects were instructed to react to every plus sign by 
pressing the enter key with their right hand. The low workload 
(easy) condition contained an equal number of Go and Ignore 
stimuli. In Go trials, the react stimulus (plus sign) was visible 
for 500 ms. In Ignore trials, the react stimulus was present for 
150 ms before turning into a flag symbol, which was to be 
treated the same as the Go trials. In the high workload (hard) 
condition, there were an equal number of Go and Inhibit trials. 
In Inhibit trials, the react stimulus was present for 150 ms 
before turning into a skull symbol. Subjects were instructed to 
stop (inhibit) their response and attempt to not press enter. The 
instructions stated to react as quickly and accurately as 
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trial was. Performance measures included accuracy, false 
positive rate, false negative rate, and response time. 

 

Figure 1.  Cognitive task timeline and conditions 

D. Data collection and signal processing 

Neuroimaging data was recorded simultaneously from all 
sensors throughout task execution. Prefrontal hemodynamics 
were measured with an fNIR Devices Model 1200 Imager and 
flat forehead sensor pad containing 16 optodes using COBI 
Studio as described in [23]. Electrophysiological activity was 
measured with a Cognionics HD-72 dry electrode EEG using 
32 active electrodes as described in [24] using channels:  
AFF3, AFF1, AFF2, AFF4, FFC5h, FFC3h, FFCz, FFC4h, 
FFC6h, FCC5h, FCC3, FCC1h, FCCz, FCC2h, FCC4, 
FCC6h, CCP5h, CCP1, CCPz, CCP2, CCP6h, CPP3h, CPPz, 
CPP4h, PO3, PO1, POz, PO2, PO4, O1h, Oz, O2h 
respectively.  Additional physiological signals were recorded 
by Cognionics extension box: heart activity was measured 
with three ECG electrodes; eye movements and blinks were 
recorded with four EOG electrodes; dynamic skin perfusion 
was recorded with a Photoplethysmography (PPG) ear clip. 
Eye tracking information including gaze fixation, saccades, 
and pupillometry was also recorded at 60 Hz using the Smart 
Eye Aurora system positioned under the computer screen.  

 

Figure 2.  Setup of simultaneous fNIRS and EEG headgear 
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For each participant, raw fNIRS data (16 optodes×2 
wavelengths) recorded at 2 Hz were low-pass filtered with a 
finite impulse response, linear phase filter with order 20 and 
cut-off frequency of 0.1 Hz to attenuate the high frequency 
noise, respiration, and cardiac cycle effects [13]. Each 
participant�� data were checked for any potential  saturation 
(when light intensity at the detector was higher than the 
analog-to-digital converter limit) and motion artifact 
contamination by means of a coefficient of variation-based 
assessment [25].  

fNIRS data for each task block were extracted using time 
synchronization markers received via serial port during the 
experiment, and hemodynamic changes for each of the 16 
optodes during each trial block were calculated separately 
using the Modified Beer Lambert Law. For across session 
comparisons, the hemodynamic response at each optode was 
averaged across time for each block to provide a mean 
hemodynamic response at each optode for each block. The 
final outputs of each optode were mean block oxygenated 
hemoglobin (HbO), deoxygenated hemoglobin (HbR), and the 
difference between HbO-HbR (Oxy) [13]. 

EEG data were recorded at 500 Hz after checking for 
impedance and processed using a notch filter at 60 Hz, 
followed by a bandpass filter between 1-59Hz. Each channel 
was evaluated for quality using Automatic Subspace 
Reconstruction (ASR) [26] with default settings implemented 
in EEGLAB [27]. Continuous band power calculations for 
each channel were done using ��	��������� spectral density 
of the EEG signal with a moving window of 2 s. Power spectra 
were divided into delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 
Hz), beta (13-30 Hz) and gamma (>30 Hz) bands, as well as 
certain combinations such as alpha-theta.  

E. Statistical Analysis 

Processing of behavioral data as well as fNIRS and EEG 

signals were performed using Matlab 2018b (Natick, MA, 

USA). For the macroscopic level (across session), canonical 

correlation analysis (CCA) was conducted using NCSS12 

(Kaysville, UT, USA) for group comparison of sessions using 

block averages of each task condition and iterations from all 

subjects. For the microscopic level (within session: in each 

task block), assessment of continuous performance prediction 

was conducted by first generating a measure of continuous 

performance by convolving the sequence of correct responses 

during the Inhibit condition with a Gaussian function. Pearson 

correlation values for the task were averaged on a per-subject 

basis across trials for each lag value (�� and biomarker. 

Correlation values were then compared across subjects by 

using a one-sided t-test against zero to determine significant 

group-level positive and negative relationships. Correlations 

and figures were generated using Python and the SciPy 

packages. 

III. RESULTS 

A. Across sessions  

In this section, CCA linear regression results at the macro 
level are presented for Session 1 to Session 2 (Table 1), 
Session 1 to Session 3 (Table 2) and Session 2 to Session 3 
(Table 3) with statistical significance and R-squared 
correlation coefficients. In each table, the first row indicates 

the behavioral performance accuracy (Acc.) in both predictor 
and target sessions. The fNIRS biomarker Oxy is the 
difference between HbO and HbR. Results showed that in all 
comparisons, optodes 11 and 13 in right medial prefrontal 
cortex had a higher predictive value than behavioral 
performance. See supplementary material of [28] where we 
described the optode locations in Brodmann areas and 
corresponding anatomical regions. 

TABLE I.  SESSION 1 TO SESSION 2 COMPARISONS. LINEAR 

REGRESSION GROUP COMPARISON OF ACCURACY AND FNIRS AND EEG 

Predictor Target R2 F Prob 

Acc. S1 Acc. S2 0.0481 6.87 0.009770 

Oxy11 S1 Acc. S2 0.1928 29.62 0.000000 

Oxy13 S1 Acc. S2 0.2058 32.13 0.000000 

Alpha AFF3 S1 Acc. S2 0.0738 8.28 0.004863 

Alpha AFF1 S1 Acc. S2 0.0807 9.13 0.003160 

Alpha AFF2 S1 Acc. S2 0.1189 14.04 0.000294 

Theta AFF3 S1 Acc. S2 0.0759 8.54 0.004270 

Theta AFF1 S1 Acc. S2 0.0989 11.42 0.001026 

Theta AFF2 S1 Acc. S2 0.1165 13.72 0.000342 

TABLE II.  SESSION 1 TO SESSION 3 COMPARISONS. LINEAR 

REGRESSION GROUP COMPARISON OF ACCURACY AND FNIRS AND EEG 

Predictor Target R2 F Prob 

Acc. S1 Acc. S3 0.0511 7.33 0.007648 

Oxy11 S1 Acc. S3 0.2937 51.56 0.000000 

Oxy13 S1 Acc. S3 0.3793 75.77 0.000000 

Alpha AFF3 S1 Acc. S3 0.0569 6.46 0.012461 

Alpha AFF1 S1 Acc. S3 0.0640 7.32 0.007931 

Alpha AFF2 S1 Acc. S3 0.1065 12.75 0.000534 

Theta AFF3 S1 Acc. S3 0.0570 6.47 0.012424 

Theta AFF1 S1 Acc. S3 0.0862 10.1 0.001940 

Theta AFF2 S1 Acc. S3 0.0996 11.84 0.000827 

TABLE III.  SESSION 2 TO SESSION 3 COMPARISONS. LINEAR 

REGRESSION COMPARISON OF ACCURACY AND FNIRS AND EEG 

Predictor Target R2 F Prob 

Acc. S2 Acc. S3 0.1886 31.62 0.000000 

Oxy11 S2 Acc. S3 0.3104 60.33 0.000000 

Oxy13 S2 Acc. S3 0.1150 17.15 0.000061 

Alpha AFF3 S2 Acc. S3 0.3733 78.03 0.000000 

Alpha AFF1 S2 Acc. S3 0.3835 82.11 0.000000 

Alpha AFF2 S2 Acc. S3 0.3052 57.09 0.000000 

Theta AFF3 S2 Acc. S3 0.2669 47.68 0.000000 

Theta AFF1 S2 Acc. S3 0.2809 51.56 0.000000 

Theta AFF2 S2 Acc. S3 0.2293 38.67 0.000000 

 

B. Within session during task 

In order to evaluate the relationship between preceding 

neurophysiological states and imminent task performance, we 
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performed a time-series cross-correlation of subject results 

with measures of continuous task performance. Negative 

values for � depict temporal segments where brain activity 

anticipates performance. 

fNIRS results showed that optodes in the right prefrontal 

cortex (PFC) appeared to anticipate continuous behavioral 

performance on average in all sessions (See Figure 3 and 4). 

Specifically, optode 12 appeared to have a positive correlation 

with future continuous performance in the time-range � �

����	 � 
�, (p < 0.001, t = 4.16-4.38) with peak correlation 

of 0.19 at � � ���.  

Significance-masked (thresholded) average correlation 

with lagged continuous performance for HbO and HbR across 

all optodes is shown in Figure 3. Colorbar indicates 

significance levels of the group correlation distribution. Mean 

group correlations are presented in Figure 4 (Masked at p < 

0.05). 

 

 

Figure 3.  Significance p values of the cross-correlation of fNIRS optodes 

(Opt.1-16) with continuous performance. Negative lag indicates brain 

activity precedes accuracy.  

 

Figure 4.  R values of the cross-correlation of fNIRS optodes (Opt.1-16) 

with continuous accuracy. Negative lag indicates brain activity precedes 

accuracy 

EEG results suggested that a negative correlation in frontal 

alpha/theta ratio anticipated improved continuous 

performance in channel 6 (FFch3, near FC3) with a mean 

correlation of r = -0.097 at � � ��
�� 
� (p < 0.017, t = 

2.6). However, parietal alpha/theta engagement measured 

most prominently in channel 27 (POz) tended to more 

immediately precede and positively correlate with task 

performance with a mean correlation of r = 0.093 at � �

����� � �� (p < 0.0019, t = 3.55 to 3.72) (see Fig. 5 and 6). 

 Together, these results illustrate how cortical dynamics as 

measured both by fNIRS and EEG may underlie performance. 

Specifically, increased involvement in the right medial PFC 

as measured by HbO may precede periods of peak 

performance, and a similar reduction in frontal alpha/theta 

ratio with a corresponding increase in the parietal/occipital 

region may aide in more immediate performance and 

potentially serve as a status marker for operator engagement. 

 

 

Figure 5.  Significance p values of the cross-correlation of EEG alpha/theta 

ratio with continuous accuracy. Negative lag indicates brain activity 

precedes accuracy 

 

Figure 6.  R values of the cross-correlation of EEG alpha/theta ratio with 

continuous accuracy. Blue border indicates significant correlation 

distributions.  
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IV. DISCUSSION 

In this study, we aimed to study the relationship of brain 

activity to both current and future task performance. We 

investigated this relationship at the macroscopic level (across 

different sessions over days) as well as on a microscopic level 

(within session and over seconds). Our preliminary results 

from the session-level analysis indicated a consistent pattern 

from EEG (alpha and theta band power from PFC) and 

fNIRS-based brain activity (from the right medial PFC) 

possessing a significantly high correlation with future 

performance (See Table 1-3).  Moreover, current PFC activity 
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their currently observed performance. This suggests that a 

��������� ���������	� ����������� ��� �� ������ ���� ����

represent an incomplete picture of their capabilities. 

However, monitoring brain activity can reveal complimentary 

information (e.g. mental effort) which may reflect otherwise 

hidden differences in task strategy, engagement, adaptation 

and skill acquisition. And, these appear to be a more refined 

predictor of future performance. 

These across-session results are further supported by the 

within-session analysis that shows significant positive 

correlations with near-future performance for fNIRS optodes 

11 and 12. P��
�����
�� utilization of the right medial PFC 

region may have indicated the use of an optimal task strategy, 

and participants who successfully activated this region 

performed at higher functional levels in future sessions.  

Similarly, alpha and theta EEG band power showed high 

predictive value for future task performance according to the 

across session level analysis. In within-session analysis, a 

predominant localization of imminent task performance with 

parietal and occipital alpha/theta ratio suggested that this 

region may be recruited in successful task performance in a 

way which was supported by the aforementioned involvement 

of the right-medial PFC. 

These results overall are the first multiscale and 

��	
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���� 
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performance using both hemodynamic and 

electrophysiological perspectives both at the macroscopic 

level (across days) as well as on a microscopic level (within 

session and over seconds). Here we present initial information 

about the relationship between fNIRS measures of anterior 

prefrontal cortical hemodynamics, EEG measures of parietal 

engagement, and the performance of an attentional inhibitory 

control task. Theories of the regulation of cognition suggest 

two necessary components: one to execute control and 

another to monitor performance and identify when 

adjustments in control are needed [29]. The relationship of 

dorsolateral prefrontal cortex (fNIRS and EEG results) to 

future performance here particularly supports the earlier 

findings in different tasks about this region�s role in 

performance monitoring and particularly response inhibition 

[30]. Results further contribute and support the idea of a 

fronto-parietal salience network which is of critical 

importance to successful operator task performance [31].  

However, these preliminary findings are subject to 

limitations which must be considered here. Primarily, while 

the use of lagged performance to synchronize brain activity 

may reveal more coherent patterns underlying cognitive 

engagement, these patterns may fundamentally vary with the 

task selected and the method of performance evaluation used.   

While these results are preliminary in nature, they reveal 

the power of joint multiscale and multimodal neuroimaging 

and performance analysis. Future development of this 

approach may allow for a more integrated solution for 

operator assessment during recruitment, training, and in-field 

evaluations. While we demonstrated that it is possible to use 

brain activity to anticipate later task performance, it remains 

to be determined how the relationship between task 

performance and brain activation may be practically applied 

to more complex, real-world tasks. Future work should 

investigate the generalizability of this approach to different 

cognitive domains.   

ACKNOWLEDGMENT 

This research was supported in part by the Air Force 
�������� !�����
������ "����� #���������� $�nsing BAA 
call 002 under contract number FA8650-16-c-6764. The 
content of the information herein does not necessarily reflect 
the position or the policy of the sponsor and no official 
endorsement should be inferred. 

REFERENCES 

[1] R. Parasuraman and G. Wilson, "Putting the brain 

to work: Neuroergonomics past, present, and 

future," Human factors, vol. 50, no. 3, p. 468, 2008. 

[2] A. Curtin and H. Ayaz, "The Age of 

Neuroergonomics: Towards Ubiquitous and 

Continuous Measurement of Brain Function with 

fNIRS," Japanese Psychological Research, vol. 60, 

pp. 374-386, 2018. 

[3] H. Ayaz and F. Dehais, Neuroergonomics: The 

Brain at Work and Everyday Life, 1st ed. Elsevier 

Academic Press, 2019. 

[4] R. Parasuraman and M. Rizzo, Neuroergonomics: 

The brain at work. New York, NY USA: Oxford 

University Press, New York, NY USA, 2007. 

[5] R. Parasuraman, "Neuroergonomics: Research and 

practice," Theoretical Issues in Ergonomics 

Science, vol. 4, no. 1-2, pp. 5-20, 2003/01/01 2003. 

[6] E. A. Byrne and R. Parasuraman, 

"Psychophysiology and adaptive automation," 

Biological psychology, vol. 42, no. 3, pp. 249-268, 

1996. 

[7] P. A. Hancock, "Neuroergonomics: Where the 

Cortex Hits the Concrete," Frontiers in Human 

Neuroscience, Opinion vol. 13, no. 115, 2019-

April-12 2019. 

[8] M. Ferrari and V. Quaresima, "A brief review on 

the history of human functional near-infrared 

spectroscopy (fNIRS) development and fields of 

application," Neuroimage, vol. 63, no. 2, pp. 921�

935, 2012. 

3929

Authorized licensed use limited to: Drexel University. Downloaded on June 02,2021 at 14:31:39 UTC from IEEE Xplore.  Restrictions apply. 



  

[9] P. Bucci and S. Galderisi, "Physiologic Basis of the 

EEG Signal," in Standard Electroencephalography 

in Clinical Psychiatry, 2011, pp. 7-12. 

[10] H. Ayaz, B. Onaral, K. Izzetoglu, P. A. Shewokis, 

R. McKendrick, and R. Parasuraman, "Continuous 

monitoring of brain dynamics with functional near 

infrared spectroscopy as a tool for neuroergonomic 

research: Empirical examples and a technological 

development," Frontiers in Human Neuroscience, 

Review vol. 7, pp. 1-13, 2013. 

[11] K. Gramann, S. H. Fairclough, T. O. Zander, and 

H. Ayaz, "Editorial: Trends in Neuroergonomics," 

(in English), Frontiers in Human Neuroscience, 

Editorial vol. 11, no. 165, 2017-April-05 2017. 

[12] K. Gramann, T. P. Jung, D. P. Ferris, C. T. Lin, and 

S. Makeig, "Toward a new cognitive neuroscience: 

modeling natural brain dynamics," Front Hum 

Neurosci, vol. 8, p. 444, 2014. 

[13] H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, 

B. Willems, and B. Onaral, "Optical brain 

monitoring for operator training and mental 

workload assessment," Neuroimage, vol. 59, no. 1, 

pp. 36-47, 2012. 

[14] A. Gevins and M. Smith, "Neurophysiological 

measures of cognitive workload during human-

computer interaction," Theoretical Issues in 

Ergonomics Science, vol. 4, no. 1, pp. 113-131, 

2003. 

[15] P. Hancock, N. Meshkati, and M. Robertson, 

"Physiological reflections of mental workload," 

Aviation, space, and environmental medicine, vol. 

56, no. 11, p. 1110, 1985. 

[16] M. Stikic, R. R. Johnson, D. J. Levendowski, D. P. 

Popovic, R. E. Olmstead, and C. Berka, "EEG-

derived estimators of present and future cognitive 

performance," Frontiers in human neuroscience, 

vol. 5, p. 70, 2011. 

[17] G. E. Campbell, C. L. Belz, C. P. Scott, and P. Luu, 

"EEG knows best: predicting future performance 

problems for targeted training," in International 

Conference on Foundations of Augmented 

Cognition, 2011, pp. 131-136: Springer. 

[18] K. van der Hiele et al., "EEG markers of future 

cognitive performance in the elderly," Journal of 

clinical neurophysiology, vol. 25, no. 2, pp. 83-89, 

2008. 

[19] L. Trambaiolli, R. Cassani, C. Biazoli, A. Cravo, J. 

Ricardo Sato, and T. Falk, Resting-Awake EEG 

Amplitude Modulation can Predict Performance of 

an fNIRS-Based Neurofeedback Task. 2018. 

[20] H. Ayaz, S. Bunce, P. Shewokis, K. Izzetoglu, B. 

Willems, and B. Onaral, "Using Brain Activity to 

Predict Task Performance and Operator 

Efficiency," in Advances in Brain Inspired 

Cognitive Systems, vol. 7366, H. Zhang, A. 

Hussain, D. Liu, and Z. Wang, Eds. (Lecture Notes 

in Computer Science: Springer Berlin / Heidelberg, 

2012, pp. 147-155. 

[21] J. Peirce et al., "PsychoPy2: Experiments in 

behavior made easy," Behavior Research Methods, 

journal article vol. 51, no. 1, pp. 195-203, February 

01 2019. 

[22] K. Rubia et al., "Mapping Motor Inhibition: 

Conjunctive Brain Activations across Different 

Versions of Go/No-Go and Stop Tasks," 

NeuroImage, vol. 13, no. 2, pp. 250-261, 2// 2001. 

[23] H. Ayaz, P. A. Shewokis, A. Curtin, M. Izzetoglu, 

K. Izzetoglu, and B. Onaral, "Using MazeSuite and 

Functional Near Infrared Spectroscopy to Study 

Learning in Spatial Navigation," J Vis Exp, no. 56, 

p. e3443, 2011. 

[24] T. R. Mullen et al., "Real-time neuroimaging and 

cognitive monitoring using wearable dry EEG," 

Biomedical Engineering, IEEE Transactions on, 

vol. 62, no. 11, pp. 2553-2567, 2015. 

[25] H. Ayaz, M. Izzetoglu, P. A. Shewokis, and B. 

Onaral, "Sliding-window Motion Artifact Rejection 

for Functional Near-Infrared Spectroscopy," 

presented at the Conf Proc IEEE Eng Med Biol 

Soc, Buenos Aires, Argentina, 2010.  

[26] T. Mullen et al., "Real-time modeling and 3D 

visualization of source dynamics and connectivity 

using wearable EEG," in 2013 35th annual 

international conference of the IEEE engineering in 

medicine and biology society (EMBC), 2013, pp. 

2184-2187: IEEE. 

[27] A. Delorme et al., "EEGLAB, SIFT, NFT, 

BCILAB, and ERICA: new tools for advanced 

EEG processing," Comput Intell Neurosci, vol. 

2011, p. 130714, 2011. 

[28] Y. Liu et al., "Measuring speaker�listener neural 

coupling with functional near infrared 

spectroscopy," Scientific Reports, Article vol. 7, p. 

43293, 02/27/online 2017. 

[29] A. W. MacDonald, J. D. Cohen, V. A. Stenger, and 

C. S. Carter, "Dissociating the Role of the 

Dorsolateral Prefrontal and Anterior Cingulate 

Cortex in Cognitive Control," Science, vol. 288, no. 

5472, p. 1835, 2000. 

[30] K. Rubia, A. B. Smith, M. J. Brammer, and E. 

Taylor, "Right inferior prefrontal cortex mediates 

response inhibition while mesial prefrontal cortex is 

responsible for error detection," NeuroImage, vol. 

20, no. 1, pp. 351-358, 2003/09/01/ 2003. 

[31] R. Ptak, "The frontoparietal attention network of 

the human brain: action, saliency, and a priority 

map of the environment," The Neuroscientist, vol. 

18, no. 5, pp. 502-515, 2012. 

 

3930

Authorized licensed use limited to: Drexel University. Downloaded on June 02,2021 at 14:31:39 UTC from IEEE Xplore.  Restrictions apply. 


