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ABSTRACT

Mental workload classification is a core element of de-
signing adaptive Human-Computer Interfaces and plays an
essential role in increasing the safety and operator perfor-
mance of complex high-precision human-machine systems in
fields such as aerospace and robotic surgery. Among non-
invasive neuroimaging techniques, functional Near Infrared
Spectroscopy (fNIRS) is a promising sensing modality for
decoding mental states. While a variety of both classical and
more modern classification techniques have been explored for
fNIRS data, Convolutional Neural Networks (CNNs) have re-
ceived only minimal attention. A significant advantage of
CNNs compared to other classification methods is that they
don’t require prior feature selection or computationally de-
manding preprocessing. In previous studies on using CNN
for fNIRS signals, temporal information from the fNIRS time
series was emphasized, but valuable spatial information con-
tained in the recordings was neglected. In this work, we pro-
pose and evaluate new structures for the image data fed to
the CNN. We exploit the spatial information available in the
fNIRS data by constructing images that retain spatial struc-
ture. Classification results on real datasets show a significant
improvement (16% and 8%) compared to existing Support
Vector Machine and Deep Neural Network methods.

Index Terms— Convolutional Neural Networks, Deep
Learning, Mental Workload, Brain Computer Interfaces,
fNIRS

1. INTRODUCTION

Human mental workload plays a critical role in many com-
plex command and control systems. In recent decades, the
advance of electronics has led to ever-growing complexity
of machine functionality and interfaces ranging from mili-
tary mission systems to civilian everyday tools. It is partic-
ularly important to track operator mental workload in situa-
tions where performance failures could result in catastrophic
losses (e.g., surgery, air traffic control, etc.).

Accurate assessment of mental workload could help in
preventing operator error and allow for pertinent intervention
by predicting performance decline that can arise from either
work overload or understimulation [1]. High cognitive de-
mand of the interaction with a machine increases the likeli-
hood of errors [2] by increasing reaction time, which is pro-
portional to the number of parallel tasks and items to mem-
orize [3]. Other consequences can be fatigue, cognitive cap-
ture, and oversight of critical information [3, 4]. Therefore,
when aiming to enhance operator safety, mental workload as-
sessment is necessary for adjusting the operator’s workload
to an optimal level [4]. The ability to continuously monitor
the brains function carries an enormous potential to provide
direct insight into user intentions and mental states [5].

Among the many invasive and noninvasive methods that
have been used for measurement of neural activity, functional
Near Infrared Spectroscopy (fNIRS) has demonstrated en-
couraging results toward higher accuracy in cognitive load
classification and monitoring training [6, 7, 8]. fNIRS moni-
tors the cortical hemodynamic responses that follow neuronal
activity using wearable and portable hardware that includes
near infrared light sources and detectors. Compared to elec-
troencephalography (EEG), which monitors neurophysiolog-
ical brain activity, fNIRS is less susceptible to electrical noise
and movement artifacts but has lower temporal resolution and
low depth resolution. However, the higher spatial resolution
offered by fNIRS provides a better indication of which part
of the cortex is activated.

Various fNIRS experiments for Brain-Computer Interface
(BCI) and Human-Machine Interaction (HMI) applications
have been investigated, including cognitive tasks [9, 10] and
motor tasks [11, 12]. In many of these studies, feature extrac-
tion and machine learning algorithms are the primary focus,
and SVM (Support Vector Machine) and LDA (Linear Dis-
criminant Analysis) methods are frequently reported as the
highest accuracy classifiers [13, 14]. One contrasting case
is Aghajani et al. [3], who used SVM on a mental work-
load (MWL) experiment using hybrid fNIRS-EEG data and
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achieved 95% classification accuracy. However, perform-
ing MWL classification using conventional methods such as
SVM requires a priori feature selection and preprocessing.
The result depends on a variety of factors, including selecting
the best set of features and size of the time window [12], and
hence optimum classification is not guaranteed.

Deep Learning (DL) can overcome the challenge of fea-
ture selection, as it extracts features directly from the fNIRS
signal and requires minimum feature preprocessing. How-
ever, DL for fNIRS-based classification has been applied
in only a few studies, so much is still unknown. In 2016,
Bashivan et al. [15] introduced a method to map the loca-
tion of the electrodes to a 2D plane, building a topological
image structure for representing EEG. They reported a best-
performance accuracy of approximately 92%. In a study of
motor imagery task classification (three classes) using hy-
brid EEG+fNIRS data, a 5-layer DNN was applied [16], and
accuracy improvement of 10% compared to SVM and LDA
methods was achieved. Most recently, the application of
CNNs to fNIRs signals in the classification of a three-class
motor execution task was investigated in [12]. An average
of 6% improvement in classification was observed relative to
SVM. Saadati et al. used DNN and CNN with a temporal
framework for image construction for a variety of cognitive
and motor tasks including n-Back, word generation and two-
class motor imagery experiments. They reached to an average
accuracy of 5% and 8% higher than SVM for DNN and CNN,
respectively [17, 18].

To apply the CNN to time-series recordings, the time-
series data must be converted to a 2D image for input to the
CNN. In previous studies, a temporal approach is typically
chosen for this step, i.e., capturing recordings of all fNIRS
channels in a time window. The success of this method de-
pends heavily on the length of the dataset and of the time win-
dow; a small number of samples could result in overfitting. In
our work, we have investigated a different approach: spatial
distribution of brain activity. In this approach, we build a 2D
representation of the recorded time series based on the spa-
tial coordinates of the channels. This method has two signifi-
cant advantages over temporal representation: First, it retains
and exploits the valuable spatial information in the fNIRS
recordings. Second, the number of samples is large enough
to achieve high classification accuracy and avoid overfitting
even when the length of the experiment is short.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief description of CNNs. The proposed
spatial representation of the fNIRS measurements is pre-
sented in Section 3. After a description of the dataset spec-
ifications and the dataset preprocessing in Section 4, the
proposed CNN, including the network architecture and hy-
perparameter configuration, is described in Section 5. Finally,
classification results are presented and discussed in Section
6, and Section 7 concludes the paper.

2. CONVOLUTIONAL NEURAL NETWORKS

The CNN is a multi-category classifier derived from Artifi-
cial Neural Networks (ANNs). A multi-category classifica-
tion problem can be stated as the classification of N observa-
tion samples for each subject i, {Xi, Yi}. In this notation,
Xi = [xi1, ... , xki , ..., xin] ∈ �d, where xij is the 2D
image constructed from P channels at time j for subject i.
Yi = [yi1 , yi2 , ..., yqi, ..., yiC ] ∈ �C is the coded class. C
is one of K distinct classes, e.g., for the n-back test with 3
levels, possible codes are 0, 1, and 2. The classifier function
f , which maps the input images xki to the output label space
is f(Xj ; θ) : �d → C with estimation parameter θ.

In a CNN, the output of the function f is computed from a
loss function based on the following conditional probability:

p(lk|fk(Xj ; θ)) =
exp(fk(Xj ; θ))∑K

m=1(exp(fm(Xj ; θ)))
. (1)

The loss function is given by

θ∗ = argmin
θ

N∑

j=1

K∑

k=1

− log(p(lk|fk(Xj ; θ)))δ(yi = lk),

(2)
where δ(yi = lk) is the decision rule. Minimizing this loss
function, the probability of each class determines the class of
a sample [19].

2.1. The Architecture

A CNN applies convolution filters to the input data and solves
a gradient descent problem with a smaller number of weights
than an ANN. A CNN consists of several layers: the input
layer, convolutional layer(s), max-pooling layer(s), fully con-
nected hidden layer(s), and the output layer(s). The CNN
used for the classification presented in this paper is shown
in Fig. 1.a.

In the convolutional layer(s) of a CNN, a series of learn-
able convolution filters (kernels) are convolved across the raw
pixel data of an image to extract and learn higher-level fea-
tures. These higher-level features are called activation maps.
The max-pooling layer downsamples the image data extracted
by the convolutional layers to reduce the dimensionality of the
feature map and decrease processing time.

The fully connected layer(s) perform classification on the
extracted features based on information in labeled training
data. Every node in a fully connected layer is connected to
every node in the previous layer. Finally, the output layer
contains a single node for each target class in the model with
a softmax activation function to compute the probability of
each class. The softmax activation function ensures that the
final outputs fulfill the constraints of a probability density.
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3. IMAGE STRUCTURE

To use a CNN for fNIRS-based MWL classification, the
fNIRS signals from the brain must be converted to a data
structure that can be fed into a deep learning algorithm. In
the case of DNNs, this is an easy step since we are able to
feed the time series directly into the first layer neurons of the
network. In CNNs, however, the time-series signals need to
be represented as 2D images, since this is the structure of the
CNN input.

To convert the time-series data to images, snapshots of
the recordings of all channels on the scalp are used to make a
sample image. First, a mesh image is defined. At a given time
(or sample) t0, observations from the channels are inserted
into the pixels corresponding to their spatial coordinates; val-
ues are assigned to the other pixels via linear interpolation.
The example image below corresponds to the recording Sm

t0
at time t0 with interpolated values sit0 . The width and height
of the image represent the spatial distribution of activity over
the cortex. Performing this image construction procedure for
each sample results in a grayscale topographical activity map
which is used as the input image to the CNN. Unlike the
temporal image method, this method preserves the spatial in-
formation while generating enough images to achieve strong
classification performance.

⎡
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(3)

4. DATASET AND PREPROCESSING

4.1. Dataset

This study makes use of a dataset collected at the Technische
Universitat Berlin by Jaeyoung Shin et al. [20] in 2017. The
dataset includes simultaneous fNIRS (36 channels) record-
ings of the scalp for MWL during n-back (0-, 2- and 3-back)
tasks. These tasks are classified into four possibilities: 0-,
2-, and 3-back tasks, and rest. The study included 26 right-
handed healthy participants. The dataset consists of three ses-
sions, where each session contains three series of 0-, 2-, and
3-back tasks. Nine series of n-back tasks were performed for
each participant. A single series included 20 trials with 2 sec-
onds for each trial (a total of 40 sec. task period), and a 20
sec. rest period in each session. Sixteen sources and 16 de-
tectors were placed in frontal, motor, parietal, and occipital

areas of the brain. A summary of the dataset is presented in
Table 1.

Table 1. Summary of the data collected at the Technische
Universitat Berlin by Jaeyoung Shin et al. [20] in 2017.

MWL Trials Task time Rest time Classification

n-Back 180 40 20 Level of difficulty

4.2. Preprocessing

The fNIRs data was sampled at a rate of 10 Hz. Deoxy- and
Oxy-hemoglobin data, HbR and HbO, were computed from
the fNIRS optical density using the modified Beer-Lambert
law (mBLL) [20] using global baseline at the beginning of
the session. The recording was filtered using a second-order
digital Butterworth low pass filter with cut-off frequency of
0.08 Hz to remove the physiological noise due to motion arti-
facts, heart pulsation, and respiration. To calculate the HbR
and HbO changes relative to rest, baseline correction was ap-
plied as the difference between the HbR and HbO, and the
mean of the HbR and HbO in the rest period (base) prior to
the window are calculated (ΔHbR or ΔHbR) and adapted to
build images to feed to the CNN. For the spatial images, Sm

t0
is equal to the desired measure, i.e., either ΔHbR or ΔHbR.

5. PROPOSED CONVOLUTIONAL NEURAL
NETWORK

A CNN with three convolutional layers (including max-
pooling layers after each convolutional layer) and two fully
connected layers is adapted to suit the given dataset. Its struc-
ture is shown in Fig. 1.a. The output layer consists of three
units, with a softmax activation representing a probability dis-
tribution over the classes. This ensures that the network does
not overfit by depending on specific hidden units. There are
32 3×3 kernels in each layer. The two fully connected layers
have 256 and 128 neurons, respectively. This architecture
was selected after experimenting with many different archi-
tectures, both shallower and deeper. Changes in image size as
the data passes through the CNN are depicted in Fig. 1.a. The
image size is 42 × 36; after three convolutional layers with a
filter size of 3 × 3, the final image is 4 × 4. The activation
function we use is the rectified linear unit (ReLU) function,
considering its fast convergence and ability in dampening the
vanishing gradient problem [19].

An overview of the entire classification process flow is
shown in Fig. 1.b. After filtering, fNIRS data is squared,
and then ΔHbO is calculated. The data is fed to the CNN
algorithm to train the network. This approach is not limited
to mental workload classification and is general enough to be
leveraged in any fNIRS-based classification task. The mental
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Fig. 1. a. Proposed network specifications: A CNN with three convolutional layers (including max-pooling after each convolu-
tional layer), two fully connected layers, and a softmax output layer b. CNN classification process flow: After filtering, baseline
correction and calculating ΔHbR spatial representations are built and fed to the CNN algorithm to train the network. c. DNN
classification process flow: Signals are divided into 1-sec. windows. After filtering, baseline correction and calculating ΔHbR

are fed to the DNN to train the network.

workload experiment serves as an example demonstrating the
potential advantages of the approach.

6. CLASSIFICATION PERFORMANCE RESULTS

fNIRS data acquired from 26 human subjects has been de-
noised, and ΔHbR and ΔHbO have been calculated and la-
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Fig. 2. Mean training and validation accuracy comparison
over the number of the epochs

beled for 0-, 2-, and 3-back tasks. We compare performance
across three classifiers: Spatial CNN, DNN, and SVM. Sin-
gle subject classification mean accuracy and standard devia-
tion for a 10-fold validation approach using ΔHbO and each
of the comparison classifiers are presented in Table 2. The
DNN method, derived from [18], consists of four hidden lay-
ers, each with 60 neurons, shown in Fig. 1.c. The number
of the neurons in the input layer is equal to the number of
channels. The output layer consists of three classes with a
soft-max activation. The input features to the DNN are de-
fined as N samples, each of which contains values for ΔHbO

averaged over a 1-sec. time window for all channels [16].
The classification process flow for DNN is shown in Fig. 1.c;
input features are calculated and filtered, then ΔHbO is calcu-
lated and fed to the DNN algorithm to train the network.

For most subjects in the dataset, both of the deep learn-
ing classifiers (CNN and DNN) exhibit stronger classification
performance than the SVM. Spatial CNN achieves consider-
ably better classification performance than the other methods,
reaching an average of 97% accuracy with a standard devi-
ation of 1% for the ΔHbO classification. This is a 16% im-
provement relative to SVM and an 8% improvement relative
to DNN. A single subject best performance was achieved with
the spatial CNN classifier with an accuracy of 99.6%.

A noted advantage of the spatial CNN is its low per-
subject and between-subject standard deviation, 1%, which
makes it a reliable classifier compared to the other methodolo-
gies which show 6% to 7% between-subject average standard
deviation.

Figure 2 presents the accuracy for training and validation
in ΔHbO. The solid lines and shadowing illustrate the mean
accuracy and standard deviation, respectively. As the figure
indicates, the accuracy reaches its highest level around epoch
40 and then plateaus. Standard deviation of validation accu-
racy is higher than that of training during all of the training

Table 2. Classification accuracy results for n-back tasks
Participants 1 2 3 4 5 6 7 8 9

Spatial CNN 0.98 0.89 0.97 0.95 0.99 0.97 0.99 0.99 0.97

SVM 0.82 0.8 0.76 0.76 0.87 0.71 0.8 0.84 0.8

DNN 0.91 0.7 0.82 0.86 0.83 0.81 0.96 0.92 0.85

Participants 10 11 12 13 14 15 16 17 18

Spatial CNN 0.99 0.91 0.98 0.94 0.97 0.92 0.99 0.96 0.97

SVM 0.91 0.78 0.91 0.67 0.82 0.87 0.93 0.78 0.84

DNN 0.89 0.89 0.89 0.77 0.93 0.83 0.95 0.83 0.85

Participants 19 20 21 22 23 24 25 26 Avg.

Spatial CNN 0.98 0.98 0.98 0.99 0.98 0.96 0.95 0.97 0.97 ± 0.01

SVM 0.84 0.91 0.8 0.87 0.78 0.93 0.84 0.89 0.82 ± 0.06

DNN 0.84 0.93 0.91 0.92 0.89 0.9 0.89 0.9 0.87± 0.07

process, but it improves (declines) as the epoch number in-
creases. Considering these measures, spatial CNN demon-
strates a great potential for further use and investigation in
fNIRS-based classification.

7. CONCLUSION

We investigated the performance of a CNN structure with spa-
tial data representation in the classification of mental work-
load using fNIRS data. The proposed algorithm significantly
improves classification performance relative to a conventional
SVM and a DNN, reaching 97% average accuracy for the
n-back tasks, a 16% and 8% improved performance relative
to the SVM and DNN, respectively. The results presented
in this paper demonstrate the feasibility of achieving strong
classification performance of fNIRS-based BCI using a CNN.
[21, 22]
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